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This is a very useful table, so it's worth taking a moment to think about what all these numbers
are telling us. First, notice that the row sums aren’t telling us anything new at all. For example,
the first row tells us that if we ignore all this umbrella business, the chance that today will be
a rainy day is 15%. That's not surprising, of course, as that's our prior.** The important thing
isn't the number itself. Rather, the important thing is that it gives us some confidence that our
calculations are sensible! Now take a look at the column sums and notice that they tell us something
that we haven't explicitly stated yet. In the same way that the row sums tell us the probability of
rain, the column sums tell us the probability of me carrying an umbrella. Specifically, the first
column tells us that on average (i.e., ignoring whether it's a rainy day or not) the probability of me
carrying an umbrella is 8.75%. Finally, notice that when we sum across all four logically-possible
events, everything adds up to 1. In other words, what we have written down is a proper probability

distribution defined over all possible combinations of data and hypothesis.

Now, because this table is so useful, | want to make sure you understand what all the elements

correspond to and how they written:

Umbrella No-umbrella

Rainy | P(Umbrella, Rainy)  P(No-umbrella, Rainy) | P(Rainy)

Dry P(Umbrella, Dry) P(No-umbrella, Dry) P(Dry)

P(Umbrella) P(No-umbrella)

Finally, let's use “proper” statistical notation. In the rainy day problem, the data corresponds to the
observation that | do or do not have an umbrella. So we'll let d; refer to the possibility that you
observe me carrying an umbrella, and d; refers to you observing me not carrying one. Similarly, hy
is your hypothesis that today is rainy, and hy is the hypothesis that it is not. Using this notation,
the table looks like this:

*4Just to be clear, “prior” information is pre-existing knowledge or beliefs, before we collect or use any data to
improve that information.
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hi | P(hi,di) P(h1,da) | P(h)

hy | P(ho,di) P(ho, do) | P(h2)

P(dy) P(d)

014 NRAXDRRZFE>TERZEFHI S

The table we laid out in the last section is a very powerful tool for solving the rainy day problem,
because it considers all four logical possibilities and states exactly how confident you are in each of
them before being given any data. It's now time to consider what happens to our beliefs when we are
actually given the data. In the rainy day problem, you are told that | really am carrying an umbrella.
This is something of a surprising event. According to our table, the probability of me carrying an
umbrella is only 8.75%. But that makes sense, right? A guy carrying an umbrella on a summer
day in a hot dry city is pretty unusual, and so you really weren't expecting that. Nevertheless, the
data tells you that it is true. No matter how unlikely you thought it was, you must now adjust your
beliefs to accommodate the fact that you now know that | have an umbrella.*® To reflect this new

knowledge, our revised table must have the following numbers:

Umbrella  No-umbrella
Rainy 0
Dry 0
Total 1 0

In other words, the facts have eliminated any possibility of “no umbrella”, so we have to put zeros
into any cell in the table that implies that I'm not carrying an umbrella. Also, you know for a fact
that | am carrying an umbrella, so the column sum on the left must be 1 to correctly describe the
fact that P(umbrella) = 1.

What two numbers should we put in the empty cells? Again, let's not worry about the maths,
and instead think about our intuitions. When we wrote out our table the first time, it turned out
that those two cells had almost identical numbers, right? We worked out that the joint probability
of “rain and umbrella” was 4.5%, and the joint probability of “dry and umbrella” was 4.25%. In

other words, before | told you that | am in fact carrying an umbrella, you'd have said that these

*51f we were being a bit more sophisticated, we could extend the example to accommodate the possibility that I'm
lying about the umbrella. But let's keep things simple, shall we?
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two events were almost identical in probability, yes? But notice that both of these possibilities are
consistent with the fact that | actually am carrying an umbrella. From the perspective of these two
possibilities, very little has changed. | hope you'd agree that it's still true that these two possibilities
are equally plausible. So what we expect to see in our final table is some numbers that preserve the
fact that “rain and umbrella” is slightly more plausible than “dry and umbrella”, while still ensuring

that numbers in the table add up. Something like this, perhaps?

Umbrella  No-umbrella
Rainy 0.514 0
Dry 0.486 0
Total 1 0

What this table is telling you is that, after being told that I'm carrying an umbrella, you believe that
there's a 51.4% chance that today will be a rainy day, and a 48.6% chance that it won't. That's
the answer to our problem! The posterior probability of rain P(h|d) given that | am carrying an
umbrella is 51.4%

How did | calculate these numbers? You can probably guess. To work out that there was a 0.514
probability of “rain”, all | did was take the 0.045 probability of “rain and umbrella” and divide it by
the 0.0875 chance of “umbrella”. This produces a table that satisfies our need to have everything
sum to 1, and our need not to interfere with the relative plausibility of the two events that are
actually consistent with the data. To say the same thing using fancy statistical jargon, what |'ve
done here is divide the joint probability of the hypothesis and the data P(d, h) by the marginal
probability of the data P(d), and this is what gives us the posterior probability of the hypothesis

given the data that have been observed. To write this as an equation *®
P(d, h)
P(h|d) =
(hld) = 5

However, remember what | said at the start of the last section, namely that the joint probability
P(d, h) is calculated by multiplying the prior P(h) by the likelihood P(d|h). In real life, the things
we actually know how to write down are the priors and the likelihood, so let’s substitute those back
into the equation. This gives us the following formula for the posterior probability

P(d|h)P(h)

*6You might notice that this equation is actually a restatement of the same basic rule | listed at the start of the
last section. If you multiply both sides of the equation by P(d), then you get P(d)P(h|d) = P(d, h), which is the
rule for how joint probabilities are calculated. So I'm not actually introducing any “new” rules here, I'm just using
the same rule in a different way.
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And this formula, folks, is known as Bayes’ rule. It describes how a learner starts out with prior
beliefs about the plausibility of different hypotheses, and tells you how those beliefs should be revised

in the face of data. In the Bayesian paradigm, all statistical inference flows from this one simple
rule.
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i >

hi | P(hi,di) P(h1,da) | P(h)

hy | P(ho,di) P(ho, do) | P(h2)

P(dy) P(d)

114 RAZADRREZF->TERILEEHITS

The table we laid out in the last section is a very powerful tool for solving the rainy day problem,
because it considers all four logical possibilities and states exactly how confident you are in each of
them before being given any data. It's now time to consider what happens to our beliefs when we are
actually given the data. In the rainy day problem, you are told that | really am carrying an umbrella.
This is something of a surprising event. According to our table, the probability of me carrying an
umbrella is only 8.75%. But that makes sense, right? A guy carrying an umbrella on a summer
day in a hot dry city is pretty unusual, and so you really weren't expecting that. Nevertheless, the
data tells you that it is true. No matter how unlikely you thought it was, you must now adjust your
beliefs to accommodate the fact that you now know that | have an umbrella.*® To reflect this new

knowledge, our revised table must have the following numbers:

Umbrella  No-umbrella
Rainy 0
Dry 0
Total 1 0

In other words, the facts have eliminated any possibility of “no umbrella”, so we have to put zeros
into any cell in the table that implies that I'm not carrying an umbrella. Also, you know for a fact
that | am carrying an umbrella, so the column sum on the left must be 1 to correctly describe the
fact that P(umbrella) = 1.

What two numbers should we put in the empty cells? Again, let's not worry about the maths,
and instead think about our intuitions. When we wrote out our table the first time, it turned out
that those two cells had almost identical numbers, right? We worked out that the joint probability
of “rain and umbrella” was 4.5%, and the joint probability of “dry and umbrella” was 4.25%. In

other words, before | told you that | am in fact carrying an umbrella, you'd have said that these

*61f we were being a bit more sophisticated, we could extend the example to accommodate the possibility that I'm
lying about the umbrella. But let's keep things simple, shall we?
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two events were almost identical in probability, yes? But notice that both of these possibilities are
consistent with the fact that | actually am carrying an umbrella. From the perspective of these two
possibilities, very little has changed. | hope you'd agree that it's still true that these two possibilities
are equally plausible. So what we expect to see in our final table is some numbers that preserve the
fact that “rain and umbrella” is slightly more plausible than “dry and umbrella”, while still ensuring

that numbers in the table add up. Something like this, perhaps?

Umbrella  No-umbrella
Rainy 0.514 0
Dry 0.486 0
Total 1 0

What this table is telling you is that, after being told that I'm carrying an umbrella, you believe that
there's a 51.4% chance that today will be a rainy day, and a 48.6% chance that it won't. That's
the answer to our problem! The posterior probability of rain P(h|d) given that | am carrying an
umbrella is 51.4%

How did | calculate these numbers? You can probably guess. To work out that there was a 0.514
probability of “rain”, all | did was take the 0.045 probability of “rain and umbrella” and divide it by
the 0.0875 chance of “umbrella”. This produces a table that satisfies our need to have everything
sum to 1, and our need not to interfere with the relative plausibility of the two events that are
actually consistent with the data. To say the same thing using fancy statistical jargon, what |'ve
done here is divide the joint probability of the hypothesis and the data P(d, h) by the marginal
probability of the data P(d), and this is what gives us the posterior probability of the hypothesis

given the data that have been observed. To write this as an equation *’
P(d, h)
P(h|d) =
(hld) = 5

However, remember what | said at the start of the last section, namely that the joint probability
P(d, h) is calculated by multiplying the prior P(h) by the likelihood P(d|h). In real life, the things
we actually know how to write down are the priors and the likelihood, so let’s substitute those back
into the equation. This gives us the following formula for the posterior probability

P(d|h)P(h)

*TYou might notice that this equation is actually a restatement of the same basic rule | listed at the start of the
last section. If you multiply both sides of the equation by P(d), then you get P(d)P(h|d) = P(d, h), which is the
rule for how joint probabilities are calculated. So I'm not actually introducing any “new” rules here, I'm just using
the same rule in a different way.
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And this formula, folks, is known as Bayes’ rule. It describes how a learner starts out with prior
beliefs about the plausibility of different hypotheses, and tells you how those beliefs should be revised
in the face of data. In the Bayesian paradigm, all statistical inference flows from this one simple

rule.

1.2

Bayesian hypothesis tests

In Chapter 7?7 | described the orthodox approach to hypothesis testing. It took an entire chapter
to describe, because null hypothesis testing is a very elaborate contraption that people find very
hard to make sense of. In contrast, the Bayesian approach to hypothesis testing is incredibly simple.
Let's pick a setting that is closely analogous to the orthodox scenario. There are two hypotheses
that we want to compare, a null hypothesis hy and an alternative hypothesis h;. Prior to running
the experiment we have some beliefs P(h) about which hypotheses are true. We run an experiment
and obtain data d. Unlike frequentist statistics, Bayesian statistics does allow us to talk about
the probability that the null hypothesis is true. Better yet, it allows us to calculate the posterior
probability of the null hypothesis, using Bayes' rule
P(d|ho)P(ho)

This formula tells us exactly how much belief we should have in the null hypothesis after having
observed the data d. Similarly, we can work out how much belief to place in the alternative hypothesis
using essentially the same equation. All we do is change the subscript

P(d|m)P(h1)

It's all so simple that | feel like an idiot even bothering to write these equations down, since all I'm

doing is copying Bayes rule from the previous section.*®

*80bviously, this is a highly simplified story. All the complexity of real life Bayesian hypothesis testing comes down
to how you calculate the likelihood P(d|h) when the hypothesis h is a complex and vague thing. I'm not going to
talk about those complexities in this book, but | do want to highlight that although this simple story is true as far as
it goes, real life is messier than I'm able to cover in an introductory stats textbook.
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1.2.1 The Bayes factor

In practice, most Bayesian data analysts tend not to talk in terms of the raw posterior probabilities
P(ho|ld) and P(hi|d). Instead, we tend to talk in terms of the posterior odds ratio. Think of it
like betting. Suppose, for instance, the posterior probability of the null hypothesis is 25%, and the
posterior probability of the alternative is 75%. The alternative hypothesis is three times as probable
as the null, so we say that the odds are 3:1 in favour of the alternative. Mathematically, all we have
to do to calculate the posterior odds is divide one posterior probability by the other

P(hi|d) 075
P(hold)  0.25
Or, to write the same thing in terms of the equations above

P(hi|d) — P(dlh) _ P(h)

P(hold) ~ P(dlho) ~ P(ho)

Actually, this equation is worth expanding on. There are three different terms here that you should
know. On the left hand side, we have the posterior odds, which tells you what you believe about the
relative plausibilty of the null hypothesis and the alternative hypothesis after seeing the data. On
the right hand side, we have the prior odds, which indicates what you thought before seeing the
data. In the middle, we have the Bayes factor, which describes the amount of evidence provided
by the data

P(hi|d) _ P(dlm) " P(h1)
P(ho|d) P(dlho) P(ho)
1 1 1
Posterior odds Bayes factor Prior odds

The Bayes factor (sometimes abbreviated as BF) has a special place in Bayesian hypothesis testing,
because it serves a similar role to the p-value in orthodox hypothesis testing. The Bayes factor
quantifies the strength of evidence provided by the data, and as such it is the Bayes factor that
people tend to report when running a Bayesian hypothesis test. The reason for reporting Bayes
factors rather than posterior odds is that different researchers will have different priors. Some people
might have a strong bias to believe the null hypothesis is true, others might have a strong bias to
believe it is false. Because of this, the polite thing for an applied researcher to do is report the Bayes
factor. That way, anyone reading the paper can multiply the Bayes factor by their own personal
prior odds, and they can work out for themselves what the posterior odds would be. In any case, by
convention we like to pretend that we give equal consideration to both the null hypothesis and the
alternative, in which case the prior odds equals 1, and the posterior odds becomes the same as the

Bayes factor.
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1.2.2 Interpreting Bayes factors

One of the really nice things about the Bayes factor is the numbers are inherently meaningful. If
you run an experiment and you compute a Bayes factor of 4, it means that the evidence provided
by your data corresponds to betting odds of 4:1 in favour of the alternative. However, there have
been some attempts to quantify the standards of evidence that would be considered meaningful in
a scientific context. The two most widely used are from Jeffreys1961 and Kass1995. Of the two,

| tend to prefer the Kass1995 table because it's a bit more conservative. So here it is:

Bayes factor Interpretation

1-3 Negligible evidence
3-20 Positive evidence
20 - 150 Strong evidence

>150 | Very strong evidence

And to be perfectly honest, | think that even the Kass1995 standards are being a bit charitable. If
it were up to me, I'd have called the “positive evidence” category “weak evidence”. To me, anything
in the range 3:1 to 20:1 is “weak” or “modest” evidence at best. But there are no hard and fast
rules here. What counts as strong or weak evidence depends entirely on how conservative you are
and upon the standards that your community insists upon before it is willing to label a finding as

“true”.

In any case, note that all the numbers listed above make sense if the Bayes factor is greater
than 1 (i.e., the evidence favours the alternative hypothesis). However, one big practical advantage
of the Bayesian approach relative to the orthodox approach is that it also allows you to quantify
evidence for the null. When that happens, the Bayes factor will be less than 1. You can choose to
report a Bayes factor less than 1, but to be honest | find it confusing. For example, suppose that
the likelihood of the data under the null hypothesis P(d|ho) is equal to 0.2, and the corresponding
likelihood P(d|hy) under the alternative hypothesis is 0.1. Using the equations given above, Bayes
factor here would be

_ P(d|lh) 0.1

BF=—— X ==~ _05
P(dlhy) ~ 0.2

Read literally, this result tells is that the evidence in favour of the alternative is 0.5 to 1. | find this

hard to understand. To me, it makes a lot more sense to turn the equation “upside down”, and

report the amount op evidence in favour of the null. In other words, what we calculate is this

P(d|h 0.2
BE — M - 2% _9
P(d|h;) 0.1
And what we would report is a Bayes factor of 2:1 in favour of the null. Much easier to understand,
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and you can interpret this using the table above.

1.3

Why be a Bayesian?

Up to this point I've focused exclusively on the logic underpinning Bayesian statistics. We've
talked about the idea of “probability as a degree of belief”, and what it implies about how a rational
agent should reason about the world. The question that you have to answer for yourself is this: how
do you want to do your statistics? Do you want to be an orthodox statistician, relying on sampling
distributions and p-values to guide your decisions? Or do you want to be a Bayesian, relying on
things like prior beliefs, Bayes factors and the rules for rational belief revision? And to be perfectly
honest, | can't answer this question for you. Ultimately it depends on what you think is right. It's
your call and your call alone. That being said, | can talk a little about why / prefer the Bayesian

approach.

1.3.1 Statistics that mean what you think they mean

You keep using that word. | do not think it means what you think it means

— Inigo Montoya, The Princess Bride*?

To me, one of the biggest advantages to the Bayesian approach is that it answers the right
questions. Within the Bayesian framework, it is perfectly sensible and allowable to refer to “the
probability that a hypothesis is true”. You can even try to calculate this probability. Ultimately, isn't
that what you want your statistical tests to tell you? To an actual human being, this would seem to
be the whole point of doing statistics, i.e., to determine what is true and what isn't. Any time that
you aren’t exactly sure about what the truth is, you should use the language of probability theory
to say things like “there is an 80% chance that Theory A is true, but a 20% chance that Theory B

is true instead”.

This seems so obvious to a human, yet it is explicitly forbidden within the orthodox framework. To

a frequentist, such statements are a nonsense because “the theory is true” is not a repeatable event.

*http://wuw.imdb.com/title/tt0093779/quotes. | should note in passing that I'm not the first person to use
this quote to complain about frequentist methods. Rich Morey and colleagues had the idea first. |I'm shamelessly
stealing it because it's such an awesome pull quote to use in this context and | refuse to miss any opportunity to
quote The Princess Bride.
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A theory is true or it is not, and no probabilistic statements are allowed, no matter how much you
might want to make them. There's a reason why, back in Section ?7?, | repeatedly warned you not to
interpret the p-value as the probability that the null hypothesis is true. There's a reason why almost
every textbook on statstics is forced to repeat that warning. It's because people desperately want
that to be the correct interpretation. Frequentist dogma notwithstanding, a lifetime of experience
of teaching undergraduates and of doing data analysis on a daily basis suggests to me that most
actual humans think that “the probability that the hypothesis is true” is not only meaningful, it's
the thing we care most about. It's such an appealing idea that even trained statisticians fall prey to
the mistake of trying to interpret a p-value this way. For example, here is a quote from an official
Newspoll report in 2013, explaining how to interpret their (frequentist) data analysis:*!°

Throughout the report, where relevant, statistically significant changes have been
noted. All significance tests have been based on the 95 percent level of confidence.
This means that if a change is noted as being statistically significant, there is
a 95 percent probability that a real change has occurred, and is not simply due

to chance variation. (emphasis added)

Nope! That's not what p < .05 means. That's not what 95% confidence means to a frequentist
statistician. The bolded section is just plain wrong. Orthodox methods cannot tell you that “there
is a 95% chance that a real change has occurred”, because this is not the kind of event to which
frequentist probabilities may be assigned. To an ideological frequentist, this sentence should be
meaningless. Even if you're a more pragmatic frequentist, it's still the wrong definition of a p-value.

It is simply not an allowed or correct thing to say if you want to rely on orthodox statistical tools.

On the other hand, let's suppose you are a Bayesian. Although the bolded passage is the wrong
definition of a p-value, it's pretty much exactly what a Bayesian means when they say that the
posterior probability of the alternative hypothesis is greater than 95%. And here's the thing. If the
Bayesian posterior is actually the thing you want to report, why are you even trying to use orthodox
methods? If you want to make Bayesian claims, all you have to do is be a Bayesian and use Bayesian

tools.

Speaking for myself, | found this to be the most liberating thing about switching to the Bayesian
view. Once you've made the jump, you no longer have to wrap your head around counter-intuitive
definitions of p-values. You don't have to bother remembering why you can’t say that you're 95%
confident that the true mean lies within some interval. All you have to do is be honest about what

you believed before you ran the study and then report what you learned from doing it. Sounds nice,

*10nttp://about.abc.net.au/reports-publications/appreciation-survey-summary-report-2013/
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doesn't it? To me, this is the big promise of the Bayesian approach. You do the analysis you really

want to do, and express what you really believe the data are telling you.

1.3.2 Evidentiary standards you can believe

If [p] is below .02 it is strongly indicated that the [null] hypothesis fails to account for
the whole of the facts. We shall not often be astray if we draw a conventional line at
.05 and consider that [smaller values of p| indicate a real discrepancy.

— Sir Ronald Fisher1925

Consider the quote above by Sir Ronald Fisher, one of the founders of what has become the
orthodox approach to statistics. If anyone has ever been entitled to express an opinion about the
intended function of p-values, it's Fisher. In this passage, taken from his classic guide Statistical
Methods for Research Workers, he's pretty clear about what it means to reject a null hypothesis
at p < .05. In his opinion, if we take p < .05 to mean there is “a real effect”, then “we shall not
often be astray”. This view is hardly unusual. In my experience, most practitioners express views
very similar to Fisher's. In essence, the p < .05 convention is assumed to represent a fairly stringent

evidential standard.

Well, how true is that? One way to approach this question is to try to convert p-values to
Bayes factors, and see how the two compare. It's not an easy thing to do because a p-value is
a fundamentally different kind of calculation to a Bayes factor, and they don't measure the same
thing. However, there have been some attempts to work out the relationship between the two, and
it's somewhat surprising. For example, Johnson2013 presents a pretty compelling case that (for
t-tests at least) the p < .05 threshold corresponds roughly to a Bayes factor of somewhere between
3:1 and 5:1 in favour of the alternative. If that's right, then Fisher's claim is a bit of a stretch. Let's
suppose that the null hypothesis is true about half the time (i.e., the prior probability of H is 0.5),
and we use those numbers to work out the posterior probability of the null hypothesis given that it
has been rejected at p < .05. Using the data from Johnson2013, we see that if you reject the null
at p < .05, you'll be correct about 80% of the time. | don’t know about you but, in my opinion, an
evidential standard that ensures you'll be wrong on 20% of your decisions isn't good enough. The
fact remains that, quite contrary to Fisher's claim, if you reject at p < .05 you shall quite often go

astray. It's not a very stringent evidential threshold at all.
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1.3.3 The p-value is a lie.

The cake is a lie.
The cake is a lie.
The cake is a lie.
The cake is a lie.

— Portal*!1

Okay, at this point you might be thinking that the real problem is not with orthodox statistics,
just the p < .05 standard. In one sense, that’s true. The recommendation that Johnson2013 gives
is not that “everyone must be a Bayesian now". Instead, the suggestion is that it would be wiser
to shift the conventional standard to something like a p < .01 level. That's not an unreasonable
view to take, but in my view the problem is a little more severe than that. In my opinion, there's a
fairly big problem built into the way most (but not all) orthodox hypothesis tests are constructed.
They are grossly naive about how humans actually do research, and because of this most p-values

are wrong.

Sounds like an absurd claim, right? Well, consider the following scenario. You've come up with
a really exciting research hypothesis and you design a study to test it. You're very diligent, so you
run a power analysis to work out what your sample size should be, and you run the study. You run

your hypothesis test and out pops a p-value of 0.072. Really bloody annoying, right?

What should you do? Here are some possibilities:

1. You conclude that there is no effect and try to publish it as a null result
2. You guess that there might be an effect and try to publish it as a “borderline significant”

result
3. You give up and try a new study
4. You collect some more data to see if the p value goes up or (preferably!) drops below the

“magic” criterion of p < .05

Which would you choose? Before reading any further, | urge you to take some time to think about
it. Be honest with yourself. But don't stress about it too much, because you're screwed no matter
what you choose. Based on my own experiences as an author, reviewer and editor, as well as stories

I've heard from others, here's what will happen in each case:

» Let's start with option 1. If you try to publish it as a null result, the paper will struggle to be

*Ulnttp://knowyourmeme . com/memes/the-cake-is-a-1lie
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published. Some reviewers will think that p = .072 is not really a null result. They'll argue
it's borderline significant. Other reviewers will agree it's a null result but will claim that even
though some null results are publishable, yours isn't. One or two reviewers might even be on
your side, but you'll be fighting an uphill battle to get it through.

» Okay, let's think about option number 2. Suppose you try to publish it as a borderline
significant result. Some reviewers will claim that it's a null result and should not be published.
Others will claim that the evidence is ambiguous, and that you should collect more data until
you get a clear significant result. Again, the publication process does not favour you.

» Given the difficulties in publishing an “ambiguous” result like p = .072, option number 3
might seem tempting: give up and do something else. But that’s a recipe for career suicide.
If you give up and try a new project every time you find yourself faced with ambiguity, your
work will never be published. And if you're in academia without a publication record you can
lose your job. So that option is out.

= It looks like you're stuck with option 4. You don't have conclusive results, so you decide to
collect some more data and re-run the analysis. Seems sensible, but unfortunately for you, if
you do this all of your p-values are now incorrect. All of them. Not just the p-values that you
calculated for this study. All of them. All the p-values you calculated in the past and all the
p-values you will calculate in the future. Fortunately, no-one will notice. You'll get published,

and you'll have lied.

Wait, what? How can that last part be true? | mean, it sounds like a perfectly reasonable strategy
doesn't it? You collected some data, the results weren't conclusive, so now what you want to do is

collect more data until the the results are conclusive. What’s wrong with that?

Honestly, there's nothing wrong with it. It's a reasonable, sensible and rational thing to do. In real
life, this is exactly what every researcher does. Unfortunately, the theory of null hypothesis testing
as | described it in Chapter ?? forbids you from doing this.**?> The reason is that the theory assumes
that the experiment is finished and all the data are in. And because it assumes the experiment is
over, it only considers two possible decisions. If you're using the conventional p < .05 threshold,

those decisions are:

*12|n the interests of being completely honest, | should acknowledge that not all orthodox statistical tests rely on
this silly assumption. There are a number of sequential analysis tools that are sometimes used in clinical trials and
the like. These methods are built on the assumption that data are analysed as they arrive, and these tests aren’t
horribly broken in the way I'm complaining about here. However, sequential analysis methods are constructed in a
very different fashion to the “standard” version of null hypothesis testing. They don’t make it into any introductory
textbooks, and they're not very widely used in the psychological literature. The concern I'm raising here is valid for
every single orthodox test |'ve presented so far and for almost every test |'ve seen reported in the papers | read.
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Outcome Action

p less than .05 Reject the null
p greater than .05 | Retain the null

What you're doing is adding a third possible action to the decision making problem. Specifically,
what you're doing is using the p-value itself as a reason to justify continuing the experiment. And
as a consequence you've transformed the decision-making procedure into one that looks more like

this:

Outcome Action

p less than .05 Stop the experiment and reject the null
p between .05 and .1 | Continue the experiment

p greater than .1 Stop the experiment and retain the null

The “basic” theory of null hypothesis testing isn't built to handle this sort of thing, not in the form
| described back in Chapter ??. If you're the kind of person who would choose to “collect more
data” in real life, it implies that you are not making decisions in accordance with the rules of null
hypothesis testing. Even if you happen to arrive at the same decision as the hypothesis test, you
aren’t following the decision process it implies, and it's this failure to follow the process that is

causing the problem.*'> Your p-values are a lie.

Worse yet, they're a lie in a dangerous way, because they're all too small. To give you a sense
of just how bad it can be, consider the following (worst case) scenario. Imagine you're a really
super-enthusiastic researcher on a tight budget who didn't pay any attention to my warnings above.
You design a study comparing two groups. You desperately want to see a significant result at the
p < .05 level, but you really don't want to collect any more data than you have to (because it's
expensive). In order to cut costs you start collecting data but every time a new observation arrives
you run a t-test on your data. If the t-tests says p < .05 then you stop the experiment and report
a significant result. If not, you keep collecting data. You keep doing this until you reach your pre-
defined spending limit for this experiment. Let’s say that limit kicks in at N = 1000 observations.
As it turns out, the truth of the matter is that there is no real effect to be found: the null hypothesis
is true. So, what's the chance that you'll make it to the end of the experiment and (correctly)
conclude that there is no effect? In an ideal world, the answer here should be 95%. After all, the
whole point of the p < .05 criterion is to control the Type | error rate at 5%, so what we'd hope
is that there's only a 5% chance of falsely rejecting the null hypothesis in this situation. However,

there's no guarantee that will be true. You're breaking the rules. Because you're running tests

*13A related problem: http://xkcd.com/1478/.
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Figurel.1 How badly can things go wrong if you re-run your tests every time new data arrive?

If you are a frequentist, the answer is “very wrong".

repeatedly, “peeking” at your data to see if you've gotten a significant result, all bets are off.

So how bad is it? The answer is shown as the solid black line in Figure ??, and it's astoundingly
bad. If you peek at your data after every single observation, there is a 49% chance that you will
make a Type | error. That's, um, quite a bit bigger than the 5% that it's supposed to be. By way
of comparison, imagine that you had used the following strategy. Start collecting data. Every single
time an observation arrives, run a Bayesian t-test (Section ??) and look at the Bayes factor. I'll
assume that Johnson2013 is right, and I'll treat a Bayes factor of 3:1 as roughly equivalent to a
p-value of .05.*1* This time around, our trigger happy researcher uses the following procedure. If
the Bayes factor is 3:1 or more in favour of the null, stop the experiment and retain the null. If it is
3:1 or more in favour of the alternative, stop the experiment and reject the null. Otherwise continue

testing. Now, just like last time, let’'s assume that the null hypothesis is true. What happens? As

*14Some readers might wonder why | picked 3:1 rather than 5:1, given that Johnson2013 suggests that p = .05 lies
somewhere in that range. | did so in order to be charitable to the p-value. If I'd chosen a 5:1 Bayes factor instead,
the results would look even better for the Bayesian approach.
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it happens, | ran the simulations for this scenario too, and the results are shown as the dashed line
in Figure ??. It turns out that the Type | error rate is much much lower than the 49% rate that we

were getting by using the orthodox t-test.

In some ways, this is remarkable. The entire point of orthodox null hypothesis testing is to control
the Type | error rate. Bayesian methods aren't actually designed to do this at all. Yet, as it turns out,
when faced with a "“trigger happy” researcher who keeps running hypothesis tests as the data come
in, the Bayesian approach is much more effective. Even the 3:1 standard, which most Bayesians

would consider unacceptably lax, is much safer than the p < .05 rule.

1.3.4 Is it really this bad?

The example | gave in the previous section is a pretty extreme situation. In real life, people don’t
run hypothesis tests every time a new observation arrives. So it's not fair to say that the p < .05
threshold “really” corresponds to a 49% Type | error rate (i.e., p = .49). But the fact remains that
if you want your p-values to be honest then you either have to switch to a completely different way
of doing hypothesis tests or enforce a strict rule of no peeking. You are not allowed to use the data
to decide when to terminate the experiment. You are not allowed to look at a “borderline” p-value
and decide to collect more data. You aren't even allowed to change your data analyis strategy after
looking at data. You are strictly required to follow these rules, otherwise the p-values you calculate

will be nonsense.

And vyes, these rules are surprisingly strict. As a class exercise a couple of years back, | asked
students to think about this scenario. Suppose you started running your study with the intention
of collecting N = 80 people. When the study starts out you follow the rules, refusing to look at
the data or run any tests. But when you reach N = 50 your willpower gives in... and you take a
peek. Guess what? You've got a significant result! Now, sure, you know you said that you'd keep
running the study out to a sample size of N = 80, but it seems sort of pointless now, right? The
result is significant with a sample size of N = 50, so wouldn’t it be wasteful and inefficient to keep
collecting data? Aren't you tempted to stop? Just a little? Well, keep in mind that if you do, your
Type | error rate at p < .05 just ballooned out to 8%. When you report p < .05 in your paper,

what you're really saying is p < .08. That's how bad the consequences of “just one peek” can be.

Now consider this. The scientific literature is filled with t-tests, ANOVAs, regressions and chi-
square tests. When | wrote this book | didn't pick these tests arbitrarily. The reason why these
four tools appear in most introductory statistics texts is that these are the bread and butter tools

of science. None of these tools include a correction to deal with “data peeking”: they all assume
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that you're not doing it. But how realistic is that assumption? In real life, how many people do you
think have “peeked” at their data before the experiment was finished and adapted their subsequent
behaviour after seeing what the data looked like? Except when the sampling procedure is fixed by
an external constraint, I'm guessing the answer is “most people have done it". If that has happened,
you can infer that the reported p-values are wrong. Worse yet, because we don't know what decision
process they actually followed, we have no way to know what the p-values should have been. You
can’'t compute a p-value when you don't know the decision making procedure that the researcher

used. And so the reported p-value remains a lie.

Given all of the above, what is the take home message? It's not that Bayesian methods are
foolproof. If a researcher is determined to cheat, they can always do so. Bayes' rule cannot stop
people from lying, nor can it stop them from rigging an experiment. That's not my point here. My
point is the same one | made at the very beginning of the book in Section ??: the reason why we
run statistical tests is to protect us from ourselves. And the reason why “data peeking” is such
a concern is that it's so tempting, even for honest researchers. A theory for statistical inference
has to acknowledge this. Yes, you might try to defend p-values by saying that it's the fault of the
researcher for not using them properly, but to my mind that misses the point. A theory of statistical
inference that is so completely naive about humans that it doesn't even consider the possibility that
the researcher might look at their own data isn't a theory worth having. In essence, my point is
this:

Good laws have their origins in bad morals.

— Ambrosius Macrobius*®

Good rules for statistical testing have to acknowledge human frailty. None of us are without sin.
None of us are beyond temptation. A good system for statistical inference should still work even

when it is used by actual humans. Orthodox null hypothesis testing does not.*'®

*http://www.quotationspage.com/quotes/Ambrosius_Macrobius/

*160kay, | just know that some knowledgeable frequentists will read this and start complaining about this section.
Look, I'm not dumb. | absolutely know that if you adopt a sequential analysis perspective you can avoid these errors
within the orthodox framework. | also know that you can explictly design studies with interim analyses in mind.
So yes, in one sense |I'm attacking a “straw man” version of orthodox methods. However, the straw man that I'm
attacking is the one that is used by almost every single practitioner. If it ever reaches the point where sequential
methods become the norm among experimental psychologists and I'm no longer forced to read 20 extremely dubious
ANOVAs a day, | promise I'll rewrite this section and dial down the vitriol. But until that day arrives, | stand by my
claim that default Bayes factor methods are much more robust in the face of data analysis practices as they exist in
the real world. Default orthodox methods suck, and we all know it.
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1.4

Bayesian t-tests

An important type of statistical inference problem discussed in this book is the comparison between
two means, discussed in some detail in the chapter on t-tests (Chapter ??). If you can remember
back that far, you'll recall that there are several versions of the t-test. I'll talk a little about Bayesian

versions of the independent samples t-tests and the paired samples t-test in this section.

1.4.1 Independent samples t-test

The most common type of t-test is the independent samples t-test, and it arises when you have
data as in the harpo.csv data set that we used in the earlier chapter on t-tests (Chapter 7?). In
this data set, we have two groups of students, those who received lessons from Anastasia and those
who took their classes with Bernadette. The question we want to answer is whether there's any
difference in the grades received by these two groups of students. Back in Chapter ?? | suggested
you could analyse this kind of data using the Independent Samples t-test in JASP, which gave us

the results in Figure ??. As we obtain a p-value less than 0.05, we reject the null hypothesis.

What does the Bayesian version of the t-test look like? We can get the Bayes factor analysis by
selecting the ‘T-Tests' - ‘Bayesian Independent Samples T-Test’ option. The dialog is similar to the
conventional t-test from earlier, so you should already know what to do! For now, just accept the
defaults that JASP provides. This gives the results shown in the table in Figure ??. What we get
in this table is a Bayes factor statistic of 1.755, meaning that the evidence provided by these data

are about 1.8:1 in favour of the alternative hypothesis.

Before moving on, it's worth highlighting the difference between the orthodox test results and
the Bayesian one. According to the orthodox test, we obtained a significant result, though only
barely. Nevertheless, many people would happily accept p = .043 as reasonably strong evidence for
an effect. In contrast, notice that the Bayesian test doesn’'t even reach 2:1 odds in favour of an
effect, and would be considered very weak evidence at best. In my experience that's a pretty typical

outcome. Bayesian methods usually require more evidence before rejecting the null.

1.42 Paired samples t-test

Back in Section ?? | discussed the chico.csv data set in which student grades were measured
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Results

Bayesian Independent Samples T-Test

Bayesian Independent Samples T-Test

BF g error %

grade 1.755 7.565e —4

Independent Samples T-Test

Independent Samples T-Test

t df =}

grade 2.115 31.000 0.043
Note. Student's t-test.

Figurel.2 Bayesian independent Samples t-test result in JASP

on two tests, and we were interested in finding out whether grades went up from test 1 to test 2.
Because every student did both tests, the tool we used to analyse the data was a paired samples
t-test. Figure ?? shows the JASP results table for the conventional paired t-test alongside the
Bayes factor analysis. At this point, | hope you can read this output without any difficulty. The
data provide evidence of about 6000:1 in favour of the alternative. We could probably reject the

null with some confidence!

1.5

Summary

The first half of this chapter was focused primarily on the theoretical underpinnings of Bayesian
statistics. | introduced the mathematics for how Bayesian inference works (Section ??), and gave
a very basic overview of how Bayesian hypothesis testing is typically done (Section ??). Finally, |

devoted some space to talking about why | think Bayesian methods are worth using (Section ?77?).
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Results ¥

Paired Samples T-Test

Paired Samples T-Test

t df p

grade_test2 - grade_testl 6.475 19 < .001
Nore. Student’s t-test.

Bayesian Paired Samples T-Test ¥

Bayesian Paired Samples T-Test

BF g error %

grade_test2 - grade_testl 5991.577 6.088e -8

Figurel.3 Paired samples T-Test and Bayes Factor result in JASP

Then | gave a practical example, a Bayesian t-test (Section ??). If you're interested in learning
more about the Bayesian approach, there are many good books you could look into. John Kruschke's
book Doing Bayesian Data Analysis is a pretty good place to start (Kruschke2011) and is a nice
mix of theory and practice. His approach is a little different to the “Bayes factor” approach that I've
discussed here, so you won't be covering the same ground. If you're a cognitive psychologist, you
might want to check out Michael Lee and E.J. Wagenmakers' book Bayesian Cognitive Modeling
(Lee2014). | picked these two because | think they're especially useful for people in my discipline,

but there's a lot of good books out there, so look around!
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