0.1

The one-sample z-test

In this section I'll describe one of the most useless tests in all of statistics: the z-test. Seriously
— this test is almost never used in real life. Its only real purpose is that, when teaching statistics,
it's a very convenient stepping stone along the way towards the t-test, which is probably the most

(over)used tool in all statistics.

0.1.1 The inference problem that the test addresses

To introduce the idea behind the z-test, let's use a simple example. A friend of mine, Dr. Zeppo,
grades his introductory statistics class on a curve. Let's suppose that the average grade in his class
is 67.5, and the standard deviation is 9.5. Of his many hundreds of students, it turns out that 20
of them also take psychology classes. Out of curiosity, | find myself wondering if the psychology
students tend to get the same grades as everyone else (i.e., mean 67.5) or do they tend to score
higher or lower? He emails me the zeppo.csv file, which | use to look at the grades of those
students in JASP (stored in the variable x):

50 60 60 64 66 66 67 69 70 74 76 76 77 79 79 79 81 82 82 89

Then | calculate the mean in ‘Descriptives’ - ‘Descriptive Statistics. The mean value is 72.3.

Hmm. It might be that the psychology students are scoring a bit higher than normal. That sample
mean of X = 72.3 is a fair bit higher than the hypothesised population mean of u = 67.5 but, on
the other hand, a sample size of N = 20 isn’t all that big. Maybe it's pure chance.

To answer the question, it helps to be able to write down what it is that | think | know. Firstly,
| know that the sample mean is X = 72.3. If I'm willing to assume that the psychology students
have the same standard deviation as the rest of the class then | can say that the population standard
deviation is o0 = 9.5. I'll also assume that since Dr Zeppo is grading to a curve, the psychology

student grades are normally distributed.

Next, it helps to be clear about what | want to learn from the data. In this case my research
hypothesis relates to the population mean u for the psychology student grades, which is unknown.
Specifically, | want to know if 4 = 67.5 or not. Given that this is what | know, can we devise a

hypothesis test to solve our problem? The data, along with the hypothesised distribution from which
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they are thought to arise, are shown in Figure ??. Not entirely obvious what the right answer is, is

it? For this, we are going to need some statistics.

40 50 60 70 80 90

Grades

Figurel The theoretical distribution (solid line) from which the psychology student grades

(bars) are supposed to have been generated.

0.1.2 Constructing the hypothesis test

The first step in constructing a hypothesis test is to be clear about what the null and alternative
hypotheses are. This isn't too hard to do. Our null hypothesis, Hg, is that the true population mean
w for psychology student grades is 67.5%, and our alternative hypothesis is that the population
mean isn't 67.5%. If we write this in mathematical notation, these hypotheses become:

Ho: w=067.5

Hi: w#675
though to be honest this notation doesn’t add much to our understanding of the problem, it's just a
compact way of writing down what we're trying to learn from the data. The null hypotheses Hy and
the alternative hypothesis H; for our test are both illustrated in Figure ??. In addition to providing
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us with these hypotheses, the scenario outlined above provides us with a fair amount of background
knowledge that might be useful. Specifically, there are two special pieces of information that we can
add:

1. The psychology grades are normally distributed.
2. The true standard deviation of these scores o is known to be 9.5.

For the moment, we'll act as if these are absolutely trustworthy facts. In real life, this kind of
absolutely trustworthy background knowledge doesn't exist, and so if we want to rely on these facts
we'll just have make the assumption that these things are true. However, since these assumptions
may or may not be warranted, we might need to check them. For now though, we'll keep things

simple.

null hypothesis alternative hypothesis
W=Ho U #Ho
0 =0p 0 =0p
I I I I I I
value of X value of X

Figure2 Graphical illustration of the null and alternative hypotheses assumed by the one
sample z-test (the two sided version, that is). The null and alternative hypotheses both
assume that the population distribution is normal, and additionally assumes that the population
standard deviation is known (fixed at some value 0g). The null hypothesis (left) is that the
population mean u is equal to some specified value wo. The alternative hypothesis is that the

population mean differs from this value, u # uo.

The next step is to figure out what we would be a good choice for a diagnostic test statistic,
something that would help us discriminate between Hy and H;. Given that the hypotheses all refer
to the population mean u, you'd feel pretty confident that the sample mean X would be a pretty
useful place to start. What we could do is look at the difference between the sample mean X and
the value that the null hypothesis predicts for the population mean. In our example that would

mean we calculate X — 67.5. More generally, if we let 1 refer to the value that the null hypothesis
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claims is our population mean, then we'd want to calculate
X — o

If this quantity equals or is very close to 0, things are looking good for the null hypothesis. If this
quantity is a long way away from 0, then it's looking less likely that the null hypothesis is worth

retaining. But how far away from zero should it be for us to reject Hy?

To figure that out we need to be a bit more sneaky, and we'll need to rely on those two pieces
of background knowledge that | wrote down previously; namely that the raw data are normally
distributed and that we know the value of the population standard deviation . If the null hypothesis
is actually true, and the true mean is ug, then these facts together mean that we know the complete
population distribution of the data: a normal distribution with mean pg and standard deviation o.

Adopting the notation from Section ?7?, a statistician might write this as:

X ~ Normal (g, 0°)

Okay, if that's true, then what can we say about the distribution of X? Well, as we discussed earlier
(see Section ??), the sampling distribution of the mean X is also normal, and has mean u. But

the standard deviation of this sampling distribution SE(X), which is called the standard error of the

mean, is o
SE(X) = —
MUV

In other words, if the null hypothesis is true then the sampling distribution of the mean can be

written as follows: _ _
X ~ Normal(ug, SE(X))

Now comes the trick. What we can do is convert the sample mean X into a standard score
(Section ??). This is conventionally written as z, but for now I'm going to refer to it as zg. (The
reason for using this expanded notation is to help you remember that we're calculating a standardised
version of a sample mean, not a standardised version of a single observation, which is what a z-score

usually refers to). When we do so the z-score for our sample mean is

R X — Ko
X se(X)

or, equivalently _
X — o

Zx

o/vN
This z-score is our test statistic. The nice thing about using this as our test statistic is that like all

z-scores, it has a standard normal distribution:

zx ~ Normal(0, 1)
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Two Sided Test One Sided Test

T T T T T
-1.96 0 1.96 0 1.64

Value of z Statistic Value of z Statistic

(a) (b)

Figure3 Rejection regions for the two-sided z-test (panel a) and the one-sided z-test (panel b).

(again, see Section ?7? if you've forgotten why this is true). In other words, regardless of what scale
the original data are on, the z-statistic itself always has the same interpretation: it's equal to the
number of standard errors that separate the observed sample mean X from the population mean pg
predicted by the null hypothesis. Better yet, regardless of what the population parameters for the
raw scores actually are, the 5% critical regions for the z-test are always the same, as illustrated in
Figure ??7. And what this meant, way back in the days where people did all their statistics by hand,

is that someone could publish a table like this:

critical z value

desired o level | two-sided test one-sided test

1 1.644854 1.281552
.05 1.959964 1.644854
.01 2.575829 2.326348
.001 3.290527 3.090232

This, in turn, meant that researchers could calculate their z-statistic by hand and then look up the

critical value in a text book.

0.1.3 A worked example, by hand

Now, as | mentioned earlier, the z-test is almost never used in practice. It's so rarely used in
real life that JASP doesn't have a built in function for it. However, the test is so incredibly simple

that it's really easy to do one manually. Let's go back to the data from Dr Zeppo's class. Having
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loaded the grades data, the first thing | need to do is calculate the sample mean, which I've already
done (72.3). We already have the known population standard deviation (o = 9.5), and the value of
the population mean that the null hypothesis specifies (o = 67.5), and we know the sample size

(N=20).

Next, let's calculate the (true) standard error of the mean (easily done with a calculator):

From this, we calculate our z-score:

P X — o
X sd(X)
72.3-67.5

2.124265
= 2.259606.

At this point, we would traditionally look up the value 2.26 in our table of critical values. Our
original hypothesis was two-sided (we didn't really have any theory about whether psych students
would be better or worse at statistics than other students) so our hypothesis test is two-sided (or
two-tailed) also. Looking at the little table that | showed earlier, we can see that 2.26 is bigger
than the critical value of 1.96 that would be required to be significant at & = .05, but smaller than
the value of 2.58 that would be required to be significant at a level of o = .01. Therefore, we can

conclude that we have a significant effect, which we might write up by saying something like this:

With a mean grade of 73.2 in the sample of psychology students, and assuming a true
population standard deviation of 9.5, we can conclude that the psychology students
have significantly different statistics scores to the class average (z = 2.26, N = 20,
p < .05).



0.1.4 Assumptions of the z-test

As I've said before, all statistical tests make assumptions. Some tests make reasonable assump-

tions, while other tests do not. The test I've just described, the one sample z-test, makes three

basic assumptions. These are:

Normality. As usually described, the z-test assumes that the true population distribution is
normal.*! This is often a pretty reasonable assumption, and it's also an assumption that we
can check if we feel worried about it (see Section 77).

Independence. The second assumption of the test is that the observations in your data set
are not correlated with each other, or related to each other in some funny way. This isn't as
easy to check statistically, it relies a bit on good experimental design. An obvious (and silly)
example of something that violates this assumption is a data set where you “copy” the same
observation over and over again in your data file so that you end up with a massive “sample
size” , which consists of only one genuine observation. More realistically, you have to ask
yourself if it's really plausible to imagine that each observation is a completely random sample
from the population that you're interested in. In practice this assumption is never met, but
we try our best to design studies that minimise the problems of correlated data.

Known standard deviation. The third assumption of the z-test is that the true standard
deviation of the population is known to the researcher. This is just silly. In no real world data
analysis problem do you know the standard deviation o of some population but are completely

ignorant about the mean w. In other words, this assumption is always wrong.

In view of the stupidity of assuming that o is known, let’s see if we can live without it. This takes

us out of the dreary domain of the z-test, and into the magical kingdom of the t-test!

*1 Actually this is too strong. Strictly speaking the z test only requires that the sampling distribution of the mean

be normally distributed. If the population is normal then it necessarily follows that the sampling distribution of the

mean is also normal. However, as we saw when talking about the central limit theorem, it's quite possible (even

commonplace) for the sampling distribution to be normal even if the population distribution itself is non-normal.

However, in light of the sheer ridiculousness of the assumption that the true standard deviation is known, there really

isn't much point in going into details on this front!
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The one-sample z-test

In this section I'll describe one of the most useless tests in all of statistics: the z-test. Seriously
— this test is almost never used in real life. Its only real purpose is that, when teaching statistics,
it's a very convenient stepping stone along the way towards the t-test, which is probably the most

(over)used tool in all statistics.

1.1.1 The inference problem that the test addresses

To introduce the idea behind the z-test, let's use a simple example. A friend of mine, Dr. Zeppo,
grades his introductory statistics class on a curve. Let's suppose that the average grade in his class
is 67.5, and the standard deviation is 9.5. Of his many hundreds of students, it turns out that 20
of them also take psychology classes. Out of curiosity, | find myself wondering if the psychology
students tend to get the same grades as everyone else (i.e., mean 67.5) or do they tend to score
higher or lower? He emails me the zeppo.csv file, which | use to look at the grades of those
students in JASP (stored in the variable x):

50 60 60 64 66 66 67 69 70 74 76 76 77 79 79 79 81 82 82 89

Then | calculate the mean in ‘Descriptives’ - ‘Descriptive Statistics. The mean value is 72.3.

Hmm. It might be that the psychology students are scoring a bit higher than normal. That sample
mean of X = 72.3 is a fair bit higher than the hypothesised population mean of y = 67.5 but, on
the other hand, a sample size of N = 20 isn’t all that big. Maybe it's pure chance.

To answer the question, it helps to be able to write down what it is that | think | know. Firstly,
| know that the sample mean is X = 72.3. If I'm willing to assume that the psychology students
have the same standard deviation as the rest of the class then | can say that the population standard
deviation is o0 = 9.5. I'll also assume that since Dr Zeppo is grading to a curve, the psychology

student grades are normally distributed.

Next, it helps to be clear about what | want to learn from the data. In this case my research
hypothesis relates to the population mean u for the psychology student grades, which is unknown.
Specifically, | want to know if 4 = 67.5 or not. Given that this is what | know, can we devise a
hypothesis test to solve our problem? The data, along with the hypothesised distribution from which
they are thought to arise, are shown in Figure ??. Not entirely obvious what the right answer is, is

it? For this, we are going to need some statistics.
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Figurel.1 The theoretical distribution (solid line) from which the psychology student grades
(bars) are supposed to have been generated.

1.1.2 Constructing the hypothesis test

The first step in constructing a hypothesis test is to be clear about what the null and alternative
hypotheses are. This isn't too hard to do. Our null hypothesis, Hy, is that the true population mean
w for psychology student grades is 67.5%, and our alternative hypothesis is that the population
mean isn't 67.5%. If we write this in mathematical notation, these hypotheses become:

Ho: w=067.5

Hi: w#67.5
though to be honest this notation doesn’t add much to our understanding of the problem, it's just a
compact way of writing down what we're trying to learn from the data. The null hypotheses Hy and
the alternative hypothesis H; for our test are both illustrated in Figure ??. In addition to providing
us with these hypotheses, the scenario outlined above provides us with a fair amount of background

knowledge that might be useful. Specifically, there are two special pieces of information that we can
add:
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1. The psychology grades are normally distributed.
2. The true standard deviation of these scores ¢ is known to be 9.5.

For the moment, we'll act as if these are absolutely trustworthy facts. In real life, this kind of
absolutely trustworthy background knowledge doesn't exist, and so if we want to rely on these facts
we'll just have make the assumption that these things are true. However, since these assumptions
may or may not be warranted, we might need to check them. For now though, we'll keep things

simple.

null hypothesis alternative hypothesis
W=Ho U #Ho
0 =0p 0 =0p
I I I I I I
value of X value of X

Figurel.2 Graphical illustration of the null and alternative hypotheses assumed by the one
sample z-test (the two sided version, that is). The null and alternative hypotheses both
assume that the population distribution is normal, and additionally assumes that the population
standard deviation is known (fixed at some value 0g). The null hypothesis (left) is that the
population mean u is equal to some specified value wo. The alternative hypothesis is that the

population mean differs from this value, u # uo.

The next step is to figure out what we would be a good choice for a diagnostic test statistic,
something that would help us discriminate between Hy and H;. Given that the hypotheses all refer
to the population mean u, you'd feel pretty confident that the sample mean X would be a pretty
useful place to start. What we could do is look at the difference between the sample mean X and
the value that the null hypothesis predicts for the population mean. In our example that would
mean we calculate X — 67.5. More generally, if we let pg refer to the value that the null hypothesis

claims is our population mean, then we'd want to calculate
X — o

If this quantity equals or is very close to 0, things are looking good for the null hypothesis. If this
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quantity is a long way away from 0, then it's looking less likely that the null hypothesis is worth

retaining. But how far away from zero should it be for us to reject Hy?

To figure that out we need to be a bit more sneaky, and we'll need to rely on those two pieces
of background knowledge that | wrote down previously; namely that the raw data are normally
distributed and that we know the value of the population standard deviation . If the null hypothesis
is actually true, and the true mean is ug, then these facts together mean that we know the complete
population distribution of the data: a normal distribution with mean p and standard deviation o.

Adopting the notation from Section ?7?, a statistician might write this as:

X ~ Normal(ug, o)

Okay, if that's true, then what can we say about the distribution of X? Well, as we discussed earlier
(see Section 77), the sampling distribution of the mean X is also normal, and has mean . But

the standard deviation of this sampling distribution SE(X), which is called the standard error of the

mean, is
o

v

In other words, if the null hypothesis is true then the sampling distribution of the mean can be

SE(X) =

written as follows: _ _
X ~ Normal(ug, SE(X))

Now comes the trick. What we can do is convert the sample mean X into a standard score
(Section ??). This is conventionally written as z, but for now I'm going to refer to it as zg. (The
reason for using this expanded notation is to help you remember that we're calculating a standardised
version of a sample mean, not a standardised version of a single observation, which is what a z-score

usually refers to). When we do so the z-score for our sample mean is

oo X — o
SE(X)
or, equivalently _
S X — o
J/\/N

This z-score is our test statistic. The nice thing about using this as our test statistic is that like all

z-scores, it has a standard normal distribution:
zgz ~ Normal(0, 1)

(again, see Section ?7? if you've forgotten why this is true). In other words, regardless of what scale
the original data are on, the z-statistic itself always has the same interpretation: it's equal to the
number of standard errors that separate the observed sample mean X from the population mean pg
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Two Sided Test One Sided Test

T T T T T
-1.96 0 1.96 0 1.64

Value of z Statistic Value of z Statistic
(a) (b)

Figurel.3 Rejection regions for the two-sided z-test (panel a) and the one-sided z-test (panel b).

predicted by the null hypothesis. Better yet, regardless of what the population parameters for the
raw scores actually are, the 5% critical regions for the z-test are always the same, as illustrated in
Figure ?7. And what this meant, way back in the days where people did all their statistics by hand,

is that someone could publish a table like this:

critical z value

desired a level | two-sided test one-sided test

1 1.644854 1.281552
.05 1.959964 1.644854
.01 2.575829 2.326348
.001 3.290527 3.090232

This, in turn, meant that researchers could calculate their z-statistic by hand and then look up the

critical value in a text book.

1.1.3 A worked example, by hand

Now, as | mentioned earlier, the z-test is almost never used in practice. It's so rarely used in
real life that JASP doesn’t have a built in function for it. However, the test is so incredibly simple
that it's really easy to do one manually. Let’s go back to the data from Dr Zeppo's class. Having
loaded the grades data, the first thing | need to do is calculate the sample mean, which I've already
done (72.3). We already have the known population standard deviation (¢ = 9.5), and the value of

the population mean that the null hypothesis specifies (o = 67.5), and we know the sample size
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(N=20).

Next, let's calculate the (true) standard error of the mean (easily done with a calculator):

se(X) =

=0

8l

2.1

N

4265

From this, we calculate our z-score:

2= Xt
X sd(X)
72.3-67.5
2.124265
= 2.259606.

At this point, we would traditionally look up the value 2.26 in our table of critical values. Our
original hypothesis was two-sided (we didn't really have any theory about whether psych students
would be better or worse at statistics than other students) so our hypothesis test is two-sided (or
two-tailed) also. Looking at the little table that | showed earlier, we can see that 2.26 is bigger
than the critical value of 1.96 that would be required to be significant at a = .05, but smaller than
the value of 2.58 that would be required to be significant at a level of o = .01. Therefore, we can

conclude that we have a significant effect, which we might write up by saying something like this:

With a mean grade of 73.2 in the sample of psychology students, and assuming a true
population standard deviation of 9.5, we can conclude that the psychology students
have significantly different statistics scores to the class average (z = 2.26, N = 20,

p < .05).

1.1.4 Assumptions of the z-test

As I've said before, all statistical tests make assumptions. Some tests make reasonable assump-
tions, while other tests do not. The test I've just described, the one sample z-test, makes three
basic assumptions. These are:
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» Normality. As usually described, the z-test assumes that the true population distribution is
normal.*? This is often a pretty reasonable assumption, and it's also an assumption that we
can check if we feel worried about it (see Section ?7).

» Independence. The second assumption of the test is that the observations in your data set
are not correlated with each other, or related to each other in some funny way. This isn't as
easy to check statistically, it relies a bit on good experimental design. An obvious (and silly)
example of something that violates this assumption is a data set where you “copy” the same
observation over and over again in your data file so that you end up with a massive “sample
size” , which consists of only one genuine observation. More realistically, you have to ask
yourself if it's really plausible to imagine that each observation is a completely random sample
from the population that you're interested in. In practice this assumption is never met, but
we try our best to design studies that minimise the problems of correlated data.

= Known standard deviation. The third assumption of the z-test is that the true standard
deviation of the population is known to the researcher. This is just silly. In no real world data
analysis problem do you know the standard deviation o of some population but are completely

ignorant about the mean w. In other words, this assumption is always wrong.

In view of the stupidity of assuming that o is known, let's see if we can live without it. This takes

us out of the dreary domain of the z-test, and into the magical kingdom of the t-test!

1.2

Summary

= A one sample t-test is used to compare a single sample mean against a hypothesised value

for the population mean. (Section ??)
= An independent samples t-test is used to compare the means of two groups, and tests the

null hypothesis that they have the same mean. It comes in two forms: the Student test
(Section ??) assumes that the groups have the same standard deviation, the Welch test

(Section ??) does not.
= A paired samples t-test is used when you have two scores from each person, and you want to

*2Actually this is too strong. Strictly speaking the z test only requires that the sampling distribution of the mean
be normally distributed. If the population is normal then it necessarily follows that the sampling distribution of the
mean is also normal. However, as we saw when talking about the central limit theorem, it's quite possible (even
commonplace) for the sampling distribution to be normal even if the population distribution itself is non-normal.
However, in light of the sheer ridiculousness of the assumption that the true standard deviation is known, there really
isn't much point in going into details on this front!
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test the null hypothesis that the two scores have the same mean. It is equivalent to taking
the difference between the two scores for each person, and then running a one sample t-test

on the difference scores. (Section ?7?)

= One sided tests are perfectly legitimate as long as they are pre-planned. (Section 77)

» Effect size calculations for the difference between means can be calculated via the Cohen's d
statistic. (Section 77).

= You can check the normality of a sample using QQ plots (not currently available in JASP)
and the Shapiro-Wilk test. (Section ?7)

= If your data are non-normal, you can use Mann-Whitney or Wilcoxon tests instead of t-tests.

(Section ?7?)

1.3

The one-sample t-test

After some thought, | decided that it might not be safe to assume that the psychology student
grades necessarily have the same standard deviation as the other students in Dr Zeppo's class. After
all, if I'm entertaining the hypothesis that they don’t have the same mean, then why should | believe
that they absolutely have the same standard deviation? In view of this, | should really stop assuming
that | know the true value of o. This violates the assumptions of my z-test, so in one sense I'm
back to square one. However, it's not like I'm completely bereft of options. After all, I've still got
my raw data, and those raw data give me an estimate of the population standard deviation, which

is 9.52. In other words, while | can't say that | know that ¢ = 9.5, | can say that 6 = 9.52.

Okay, cool. The obvious thing that you might think to do is run a z-test, but using the estimated
standard deviation of 9.52 instead of relying on my assumption that the true standard deviation is
9.5. And you probably wouldn’t be surprised to hear that this would still give us a significant result.
This approach is close, but it's not quite correct. Because we are now relying on an estimate of the
population standard deviation we need to make some adjustment for the fact that we have some
uncertainty about what the true population standard deviation actually is. Maybe our data are just
a fluke ..maybe the true population standard deviation is 11, for instance. But if that were actually
true, and we ran the z-test assuming o0=11, then the result would end up being non-significant.

That's a problem, and it's one we're going to have to address.
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value of X value of X

Figurel.4 Graphical illustration of the null and alternative hypotheses assumed by the (two
sided) one sample t-test. Note the similarity to the z-test (Figure ??). The null hypothesis is
that the population mean w is equal to some specified value o, and the alternative hypothesis
is that it is not. Like the z-test, we assume that the data are normally distributed, but we do

not assume that the population standard deviation o is known in advance.

1.3.1 Introducing the t-test

This ambiguity is annoying, and it was resolved in 1908 by a guy called William Sealy Gosset
(Student1908), who was working as a chemist for the Guinness brewery at the time (Box1987).
Because Guinness took a dim view of its employees publishing statistical analysis (apparently they
felt it was a trade secret), he published the work under the pseudonym “A Student” and, to this
day, the full name of the t-test is actually Student’s t-test. The key thing that Gosset figured
out is how we should accommodate the fact that we aren’t completely sure what the true standard
deviation is.*3 The answer is that it subtly changes the sampling distribution. In the t-test our test
statistic, now called a t-statistic, is calculated in exactly the same way | mentioned above. If our
null hypothesis is that the true mean is u, but our sample has mean X and our estimate of the
population standard deviation is &, then our t statistic is:

t= X~ p
6/vVN

*3Well, sort of. As | understand the history, Gosset only provided a partial solution; the general solution to the
problem was provided by Sir Ronald Fisher.
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value of t—statistic value of t-statistic

Figurel.5 The t distribution with 2 degrees of freedom (left) and 10 degrees of freedom
(right), with a standard normal distribution (i.e., mean 0 and std dev 1) plotted as dotted
lines for comparison purposes. Notice that the t distribution has heavier tails (leptokurtic:
higher kurtosis) than the normal distribution; this effect is quite exaggerated when the degrees
of freedom are very small, but negligible for larger values. In other words, for large df the t

distribution is essentially identical to a normal distribution.

The only thing that has changed in the equation is that instead of using the known true value
0, we use the estimate 6. And if this estimate has been constructed from N observations, then
the sampling distribution turns into a t-distribution with N — 1 degrees of freedom (df). The t
distribution is very similar to the normal distribution, but has “heavier” tails, as discussed earlier in
Section ?? and illustrated in Figure ??7. Notice, though, that as df gets larger, the t-distribution
starts to look identical to the standard normal distribution. This is as it should be: if you have a
sample size of N = 70,000,000 then your “estimate” of the standard deviation would be pretty much
perfect, right? So, you should expect that for large N, the t-test would behave exactly the same

way as a z-test. And that's exactly what happens!

1.3.2 Doing the test in JASP

As you might expect, the mechanics of the t-test are almost identical to the mechanics of the
z-test. So there's not much point in going through the tedious exercise of showing you how to do
the calculations using low level commands. It's pretty much identical to the calculations that we
did earlier, except that we use the estimated standard deviation and then we test our hypothesis
using the t distribution rather than the normal distribution. And so instead of going through the

calculations in tedious detail for a second time, I'll jump straight to showing you how t-tests are
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actually done. JASP comes with a dedicated analysis for t-tests that is very flexible (it can run lots
of different kinds of t-tests). It's pretty straightforward to use; all you need to do is specify ‘T-Tests’
- ‘One Sample T-Test', move the variable you are interested in (x) across into the ‘Variables' box,
and type in the mean value for the null hypothesis (‘67.5") in the ‘Test value’ box. Easy enough.
See Figure 7?7, which, amongst other things that we will get to in a moment, gives you a t-test

statistic = 2.25, with 19 degrees of freedom and an associated p-value of 0.036.

T R A e I N

Descriptives ~ T-Tests ANOVA  Regression  Frequencies Factor
T T
¥ One Sample T-Test [ [ Results
Variables
0 One Sample T-Test
x
One Sample T-Test
95% Cl for Mean Difference
t df o Mean Difference Lower Upper Cohen's d
x 2255 19  0.036 4.800 0344 9.256 0.504
Note. Student’s t-test.
Note. For the Student t-test, location parameter is given by mean difference d.
Note. For the Student t-test, effect size is given by Cohen's .
Tests Additional Statistics Note. For all tests, the alternative hypothesis specifies that the population mean is different
Student Location parameter from 67.5.
» <
Wilcoxon signed-rank Confidence interval 95 %
Z Test Effect Size

Testvalue:  67.5 Confidence interval
Descriptives

Alt. Hypothesis Descriptives plots

# Test value

> Test value Vovk-Sellke maximum p-ratio
< Test value

Assumption checks Missing Values
Normality Exclude cases analysis by analysis

Exclude cases listwise

Figurel.6 JASP does the one-sample t-test.

It is also easy to calculate a 95% confidence interval for our sample mean. If you select the
‘Location parameter’ and its associated ‘Confidence interval’ option under ‘Additional Statistics’,
you'll see in the JASP output that the ‘Mean difference’ is 4.800 with 95% Cl equal to [0.344,
9.256]. This simply means that we are 95% confidence that our estimate of the difference between
our sample and the hypothesized mean of 67.5 is between 0.344 and 9.256. If we add these
“endpoints” to the hypothesized mean, we get a 95% Cl of [67.5+0.344, 67.549.256], or said
differently, [67.844, 76.800]. If this isn't clear, don't worry. We'll explain a bit more about this in

the next section.

Now, what do we do with all this output? Well, since we're pretending that we actually care about
my toy example, we're overjoyed to discover that the result is statistically significant (i.e. p value

below .05). We could report the result by saying something like this:
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With a mean grade of 72.3, the psychology students scored slightly higher than the
average grade of 67.5 (t(19) = 2.25, p < .05); the 95% confidence interval is 67.8 to
76.8.

where t(19) is shorthand notation for a t-statistic that has 19 degrees of freedom. That said,
it's often the case that people don't report the confidence interval, or do so using a much more
compressed form than |'ve done here. For instance, it's not uncommon to see the confidence interval

included as part of the stat block, like this:
t(19) = 2.25, p < .05, Clgs = [67.8,76.8]

With that much jargon crammed into half a line, you know it must be really smart.**

1.3.3 Assumptions of the one sample t-test

Okay, so what assumptions does the one-sample t-test make? Well, since the t-test is basically
a z-test with the assumption of known standard deviation removed, you shouldn’t be surprised to
see that it makes the same assumptions as the z-test, minus the one about the known standard
deviation. That is

I*> and as noted

» Normality. We're still assuming that the population distribution is norma
earlier, there are standard tools that you can use to check to see if this assumption is met
(Section ??), and other tests you can do in it's place if this assumption is violated (Section ??).

» Independence. Once again, we have to assume that the observations in our sample are
generated independently of one another. See the earlier discussion about the z-test for

specifics (Section 77?).

Overall, these two assumptions aren't terribly unreasonable, and as a consequence the one-sample

t-test is pretty widely used in practice as a way of comparing a sample mean against a hypothesised

**More seriously, | tend to think the reverse is true. | get very suspicious of technical reports that fill their results
sections with nothing except the numbers. It might just be that I'm an arrogant jerk, but | often feel like an author
that makes no attempt to explain and interpret their analysis to the reader either doesn't understand it themselves,
or is being a bit lazy. Your readers are smart, but not infinitely patient. Don't annoy them if you can help it.

*5A technical comment. In the same way that we can weaken the assumptions of the z-test so that we're only
talking about the sampling distribution, we can weaken the t-test assumptions so that we don’'t have to assume
normality of the population. However, for the t-test it's trickier to do this. As before, we can replace the assumption
of population normality with an assumption that the sampling distribution of X is normal. However, remember that
we're also relying on a sample estimate of the standard deviation, and so we also require the sampling distribution of &
to be chi-square. That makes things nastier, and this version is rarely used in practice. Fortunately, if the population
distribution is normal, then both of these two assumptions are met.
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population mean.

1.4

The independent samples t-test (Student test)

Although the one sample t-test has its uses, it's not the most typical example of a t-test*®. A much
more common situation arises when you've got two different groups of observations. In psychology,
this tends to correspond to two different groups of participants, where each group corresponds to a
different condition in your study. For each person in the study you measure some outcome variable
of interest, and the research question that you're asking is whether or not the two groups have the

same population mean. This is the situation that the independent samples t-test is designed for.

1.4.1 The data

Suppose we have 33 students taking Dr Harpo's statistics lectures, and Dr Harpo doesn't grade to
a curve. Actually, Dr Harpo's grading is a bit of a mystery, so we don't really know anything about
what the average grade is for the class as a whole. There are two tutors for the class, Anastasia
and Bernadette. There are Ny = 15 students in Anastasia’s tutorials, and N, = 18 in Bernadette's
tutorials. The research question I'm interested in is whether Anastasia or Bernadette is a better
tutor, or if it doesn't make much of a difference. Dr Harpo emails me the course grades, in the
harpo.csv file. As usual, I'll load the file into JASP and have a look at what variables it contains
- there are three variables, ID, grade and tutor. Not surprisingly, the grade variable contains each
student’s grade. The tutor variable is a factor that indicates who each student's tutor was - either

Anastasia or Bernadette.

We can calculate means and standard deviations, using the ‘Descriptives’ - ‘Descriptive Statistics’

analysis (being sure to split by tutor). Here's a nice little summary table:

mean stddev N
Anastasia's students | 74.53 9.00 15
Bernadette's students | 69.06 5.77 18

To give you a more detailed sense of what's going on here, I've plotted histograms (not in JASP,

but using R) showing the distribution of grades for both tutors (Figure 7?), as well as a simpler plot

*6 Although it is the simplest, which is why | started with it.
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showing the means and corresponding confidence intervals for both groups of students (Figure 77?).

Anastasia’s students Bernadette’s students
N~ o ~
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(a) (b)
Figurel.7 Histograms showing the distribution of grades for students in Anastasia’s (panel a)

and in Bernadette's (panel b) classes. Visually, these suggest that students in Anastasia’s class
may be getting slightly better grades on average, though they also seem a bit more variable.

1.4.2 Introducing the test

The independent samples t-test comes in two different forms, Student’s and Welch's. The
original Student t-test, which is the one I'll describe in this section, is the simpler of the two but
relies on much more restrictive assumptions than the Welch t-test. Assuming for the moment that
you want to run a two-sided test, the goal is to determine whether two “independent samples” of
data are drawn from populations with the same mean (the null hypothesis) or different means (the
alternative hypothesis). When we say “independent” samples, what we really mean here is that
there's no special relationship between observations in the two samples. This probably doesn't make
a lot of sense right now, but it will be clearer when we come to talk about the paired samples t-test
later on. For now, let's just point out that if we have an experimental design where participants are
randomly allocated to one of two groups, and we want to compare the two groups’ mean performance
on some outcome measure, then an independent samples t-test (rather than a paired samples t-test)

is what we're after.

Okay, so let's let 1 denote the true population mean for group 1 (e.g., Anastasia’s students),
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Class

Figurel.8 The plots show the mean grade for students in Anastasia’ s and Bernadette’ s
tutorials. Error bars depict 95% confidence intervals around the mean. Visually, it does look
like there's a real difference between the groups, though it's hard to say for sure.

and wy will be the true population mean for group 2 (e.g., Bernadette's students),*” and as usual
we'll let X; and X, denote the observed sample means for both of these groups. Our null hypothesis
states that the two population means are identical (1 = w2) and the alternative to this is that they

are not (1 # o). Written in mathematical notation, this is:

Ho @ p1 = o

Hi: 1 # uo
To construct a hypothesis test that handles this scenario we start by noting that if the null
hypothesis is true, then the difference between the population means is exactly zero, u; — > = 0.

As a consequence, a diagnostic test statistic will be based on the difference between the two sample

*TA funny question almost always pops up at this point: what the heck is the population being referred to in this
case? lIs it the set of students actually taking Dr Harpo's class (all 33 of them)? The set of people who might take
the class (an unknown number of them)? Or something else? Does it matter which of these we pick? It's traditional
in an introductory behavioural stats class to mumble a lot at this point, but since | get asked this question every year
by my students, I'll give a brief answer. Technically yes, it does matter. If you change your definition of what the
“real world” population actually is, then the sampling distribution of your observed mean X changes too. The t-test
relies on an assumption that the observations are sampled at random from an infinitely large population and, to the
extent that real life isn’ t like that, then the t-test can be wrong. In practice, however, this isn’ t usually a big deal.
Even though the assumption is almost always wrong, it doesn't lead to a lot of pathological behaviour from the test,
so we tend to just ignore it.
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Figurel.9 Graphical illustration of the null and alternative hypotheses assumed by the Student
t-test. The null hypothesis assumes that both groups have the same mean u, whereas the
alternative assumes that they have different means @1 and uo. Notice that it is assumed that
the population distributions are normal, and that, although the alternative hypothesis allows

the group to have different means, it assumes they have the same standard deviation.

means. Because if the null hypothesis is true, then we'd expect X1 — X5 to be pretty close to zero.
However, just like we saw with our one-sample tests (i.e., the one-sample z-test and the one-sample
t-test) we have to be precise about exactly how close to zero this difference should be. And the
solution to the problem is more or less the same one. We calculate a standard error estimate (SE),
just like last time, and then divide the difference between means by this estimate. So our t-statistic

will be of the form: _ _
‘o X1 — Xo
- SE
We just need to figure out what this standard error estimate actually is. This is a bit trickier than
was the case for either of the two tests we've looked at so far, so we need to go through it a lot

more carefully to understand how it works.

1.4.3 A “pooled estimate” of the standard deviation

In the original “Student t-test”, we make the assumption that the two groups have the same
population standard deviation. That is, regardless of whether the population means are the same,

we assume that the population standard deviations are identical, 01 = 0,. Since we're assuming
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that the two standard deviations are the same, we drop the subscripts and refer to both of them as
0. How should we estimate this? How should we construct a single estimate of a standard deviation
when we have two samples? The answer is, basically, we average them. Well, sort of. Actually, what
we do is take a weighed average of the variance estimates, which we use as our pooled estimate
of the variance. The weight assigned to each sample is equal to the number of observations in

that sample, minus 1.

Mathematically, we can write this as

wp = Nl—l
Wy = N2_1

Now that we've assigned weights to each sample we calculate the pooled estimate of the variance

by taking the weighted average of the two variance estimates, 2 and 63

~2 ~2
2 _ W107 + Wo05
P w1 + Wo

o)

Finally, we convert the pooled variance estimate to a pooled standard deviation estimate, by taking

5. — Wla'% + W2a'%
P Wy + Ws

And if you mentally substitute w; = N; — 1 and wo, = N> — 1 into this equation you get a

the square root.

very ugly looking formula. A very ugly formula that actually seems to be the “standard” way of
describing the pooled standard deviation estimate. It's not my favourite way of thinking about
pooled standard deviations, however. | prefer to think about it like this. Our data set actually
corresponds to a set of N observations which are sorted into two groups. So let's use the notation
Xik to refer to the grade received by the /-th student in the k-th tutorial group. That is, X11 is
the grade received by the first student in Anastasia’s class, X5; is her second student, and so on.
And we have two separate group means X; and X», which we could “generically” refer to using
the notation Xy, i.e., the mean grade for the k-th tutorial group. So far, so good. Now, since
every single student falls into one of the two tutorials, we can describe their deviation from the
group mean as the difference ~
Xik — Xk
So why not just use these deviations (i.e., the extent to which each student’s grade differs from

the mean grade in their tutorial)? Remember, a variance is just the average of a bunch of squared
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deviations, so let's do that. Mathematically, we could write it like this

S (X = X)?
N

where the notation “) ;" is a lazy way of saying “calculate a sum by looking at all students
in all tutorials”, since each “/k" corresponds to one student.? But, as we saw in Chapter 77,
calculating the variance by dividing by N produces a biased estimate of the population variance.
And previously we needed to divide by N — 1 to fix this. However, as | mentioned at the time,
the reason why this bias exists is because the variance estimate relies on the sample mean, and
to the extent that the sample mean isn't equal to the population mean it can systematically bias
our estimate of the variance. But this time we're relying on two sample means! Does this mean
that we've got more bias? Yes, yes it does. And does this mean we now need to divide by N — 2

instead of NV — 1, in order to calculate our pooled variance estimate? Why, yes

Zik (Xik - )_(k)Q
N—2

~2
0, =

Oh, and if you take the square root of this then you get G,, the pooled standard deviation
estimate. In other words, the pooled standard deviation calculation is nothing special. It's not

terribly different to the regular standard deviation calculation.

2A more correct notation will be introduced in Chapter ?7?.

1.4.4 Completing the test

Regardless of which way you want to think about it, we now have our pooled estimate of the
standard deviation. From now on, I'll drop the silly p subscript, and just refer to this estimate as &.
Great. Let's now go back to thinking about the bloody hypothesis test, shall we? Our whole reason
for calculating this pooled estimate was that we knew it would be helpful when calculating our
standard error estimate. But standard error of what? In the one-sample t-test it was the standard
error of the sample mean, sE(X), and since SE(X) = o/+/N that’s what the denominator of our
t-statistic looked like. This time around, however, we have two sample means. And what we're
interested in, specifically, is the the difference between the two X1 — Xo. As a consequence, the
standard error that we need to divide by is in fact the standard error of the difference between

means.
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As long as the two variables really do have the same standard deviation, then our estimate for the

standard error is
_ _ 1 1
SE(X] — X3) =64 — + —
(% 2) =0 Ny * No

and our t-statistic is therefore _ _
K=K
- SE()_(l — )?2)

Just as we saw with our one-sample test, the sampling distribution of this t-statistic is a t-
distribution (shocking, isn't it?) as long as the null hypothesis is true and all of the assumptions of
the test are met. The degrees of freedom, however, is slightly different. As usual, we can think of
the degrees of freedom to be equal to the number of data points minus the number of constraints.
In this case, we have N observations (/N; in sample 1, and N, in sample 2), and 2 constraints (the

sample means). So the total degrees of freedom for this test are N — 2.

1.45 Doing the test in JASP

Not surprisingly, you can run an independent samples t-test easily in JASP. The outcome variable
for our test is the student grade, and the groups are defined in terms of the tutor for each class. So
you probably won't be too surprised that all you have to do in JASP is go to the relevant analysis
(‘T-Tests' - ‘Independent Samples T-Test') and move the grade variable across to the ‘Variables’

box, and the tutor variable across into the '‘Grouping Variable' box, as shown in Figure 77.

The output has a very familiar form. First, it tells you what test was run, and it tells you the
name of the dependent variable that you used. It then reports the test results. Just like last time
the test results consist of a t-statistic, the degrees of freedom, and the p-value. The final section
reports two things: it gives you a confidence interval and an effect size. I'll talk about effect sizes

later. The confidence interval, however, | should talk about now.

It's pretty important to be clear on what this confidence interval actually refers to. It is a confidence
interval for the difference between the group means. In our example, Anastasia’s students had an
average grade of 74.533, and Bernadette's students had an average grade of 69.056, so the difference
between the two sample means is 5.478. But of course the difference between population means
might be bigger or smaller than this. The confidence interval reported in Figure 77 tells you that
there's a if we replicated this study again and again, then 95% of the time the true difference in
means would lie between 0.197 and 10.759. Look back at Section ?? for a reminder about what

confidence intervals mean.

In any case, the difference between the two groups is significant (just barely), so we might write
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Descriptives ~ T-Tests ~ ANOVA  Regression Frequencies  Factor

¥ Independent Samples T-Test (/] (-] Results

D Variables Independent Samples T-Test
grade

independent Samples T-Test

95% Cl for Mean Difference
t df P Mean Difference  SE Difference  Lower Upper Cohen's ¢

grade 2115 31.000  0.043 5.478 2.589 0.197 10.759 0.740
Note. Student's t-test.

Grouping Variable

& ttor

Tests Additional Statistics ASSump“Dn Checks
Student Location parameter
Welch Comfidence intervall |95 % Test of Normality (Shapiro-Wilk)
w
Mann-Whitney Effect size L
» Confidence interval < grade Anastasia 0.982 0.981
Bernadette 0.969 0.780

Alt. Hypothesis

Descriptives Note. Significant results suggest a deviation from

Group 1 # Group 2 normality.

Descriptives plots
Group 1 > Group 2

Group 1 < Group 2

Vovk-Sellke maximum p-ratic Test of Equality of Variances (Levene's)
Assumption Checks Missing Values F df P
Normality Exclude cases analysis by analysis grade 2.485 1 0.125
Equality of variances Exclude cases listwise

Descriptives

Group Descriptives

Group N Mean sD SE
grade Anastasia 15 74.533 8,999 2324
Bernadette 18 69.056 5.775 1361

Figurel.10 Independent t-test in JASP, with options checked for useful results

up the result using text like this:

The mean grade in Anastasia’s class was 74.5% (std dev = 9.0), whereas the mean
in Bernadette's class was 69.1% (std dev = 5.8). A Student’s independent samples
t-test showed that this 5.4% difference was significant (t(31) = 2.1, p < .05, Clgs =
[0.2,10.8], d = .74), suggesting that a genuine difference in learning outcomes has

occurred.

Notice that I've included the confidence interval and the effect size in the stat block. People don't
always do this. At a bare minimum, you'd expect to see the t-statistic, the degrees of freedom and
the p value. So you should include something like this at a minimum: t(31) = 2.1, p < .05. If
statisticians had their way, everyone would also report the confidence interval and probably the effect
size measure too, because they are useful things to know. But real life doesn't always work the way
statisticians want it to so you should make a judgment based on whether you think it will help your
readers and, if you’ re writing a scientific paper, the editorial standard for the journal in question.
Some journals expect you to report effect sizes, others don’t. Within some scientific communities
it is standard practice to report confidence intervals, in others it is not. You'll need to figure out

what your audience expects. But, just for the sake of clarity, if you're taking my class, my default
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position is that it's usually worth including both the effect size and the confidence interval.

1.4.6 Positive and negative t values

Before moving on to talk about the assumptions of the t-test, there's one additional point | want
to make about the use of t-tests in practice. The first one relates to the sign of the t-statistic
(that is, whether it is a positive number or a negative one). One very common worry that students
have when they start running their first t-test is that they often end up with negative values for
the t-statistic and don’t know how to interpret it. In fact, it's not at all uncommon for two people
working independently to end up with results that are almost identical, except that one person has
a negative t values and the other one has a positive t value. Assuming that you're running a two-
sided test then the p-values will be identical. On closer inspection, the students will notice that the
confidence intervals also have the opposite signs. This is perfectly okay. Whenever this happens,
what you'll find is that the two versions of the results arise from slightly different ways of running
the t-test. What's happening here is very simple. The t-statistic that we calculate here is always of

the form
(mean 1) — (mean 2)

N (SE)

If “mean 1" is larger than “mean 2" the t statistic will be positive, whereas if “mean 2" is larger then
the t statistic will be negative. Similarly, the confidence interval that JASP reports is the confidence

interval for the difference “(mean 1) minus (mean 2)", which will be the reverse of what you'd get

if you were calculating the confidence interval for the difference “(mean 2) minus (mean 1)

Okay, that's pretty straightforward when you think about it, but now consider our t-test comparing
Anastasia’s class to Bernadette's class. Which one should we call “mean 1” and which one should
we call "mean 2". It's arbitrary. However, you really do need to designate one of them as “mean
1" and the other one as “mean 2". Not surprisingly, the way that JASP handles this is also pretty
arbitrary. In earlier versions of the book | used to try to explain it, but after a while | gave up,
because it's not really all that important and to be honest | can never remember myself. Whenever
| get a significant t-test result, and | want to figure out which mean is the larger one, | don't try to
figure it out by looking at the t-statistic. Why would | bother doing that? It's foolish. It's easier

just to look at the actual group means since the JASP output actually shows them!

Here's the important thing. Because it really doesn't matter what JASP shows you, | usually try
to report the t-statistic in such a way that the numbers match up with the text. Suppose that what
| want to write in my report is “Anastasia’s class had higher grades than Bernadette's class”. The

phrasing here implies that Anastasia’s group comes first, so it makes sense to report the t-statistic
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as if Anastasia’s class corresponded to group 1. If so, | would write

Anastasia’s class had higher grades than Bernadette's class (t(31) = 2.1, p = .04).

(I wouldn't actually underline the word “higher” in real life, I'm just doing it to emphasise the point
that “higher” corresponds to positive t values). On the other hand, suppose the phrasing | wanted
to use has Bernadette's class listed first. If so, it makes more sense to treat her class as group 1,

and if so, the write up looks like this
Bernadette's class had lower grades than Anastasia’s class (t(31) = —2.1, p = .04).

Because I'm talking about one group having “lower” scores this time around, it is more sensible to

use the negative form of the t-statistic. It just makes it read more cleanly.

One last thing: please note that you can’t do this for other types of test statistics. It works for
t-tests, but it wouldn't be meaningful for chi-square tests, F-tests or indeed for most of the tests |
talk about in this book. So don't over-generalise this advice! I'm really just talking about t-tests

here and nothing else!

1.4.7 Assumptions of the test

As always, our hypothesis test relies on some assumptions. So what are they? For the Student
t-test there are three assumptions, some of which we saw previously in the context of the one sample
t-test (see Section ?7):

» Normality. Like the one-sample t-test, it is assumed that the data are normally distributed.
Specifically, we assume that both groups are normally distributed. In Section ?? we'll discuss
how to test for normality, and in Section ?? we'll discuss possible solutions.

» Independence. Once again, it is assumed that the observations are independently sampled.
In the context of the Student test this has two aspects to it. Firstly, we assume that the
observations within each sample are independent of one another (exactly the same as for the
one-sample test). However, we also assume that there are no cross-sample dependencies. If,
for instance, it turns out that you included some participants in both experimental conditions
of your study (e.g., by accidentally allowing the same person to sign up to different conditions),
then there are some cross sample dependencies that you'd need to take into account.

» Homogeneity of variance (also called “homoscedasticity”). The third assumption is that the
population standard deviation is the same in both groups. You can test this assumption using

the Levene test, which I'll talk about later on in the book (Section ??). However, there's a
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Figurel.11 Graphical illustration of the null and alternative hypotheses assumed by the Welch
t-test. Like the Student test (Figure ??) we assume that both samples are drawn from a normal
population; but the alternative hypothesis no longer requires the two populations to have equal

variance.

very simple remedy for this assumption if you are worried, which I'll talk about in the next

section.

1.5

The independent samples t-test (Welch test)

The biggest problem with using the Student test in practice is the third assumption listed in the
previous section. It assumes that both groups have the same standard deviation. This is rarely true
in real life. If two samples don’t have the same means, why should we expect them to have the same
standard deviation? There's really no reason to expect this assumption to be true. We'll talk a little
bit about how you can check this assumption later on because it does crop up in a few different
places, not just the t-test. But right now I'll talk about a different form of the t-test (Welch1947)
that does not rely on this assumption. A graphical illustration of what the Welch t test assumes
about the data is shown in Figure 7?7, to provide a contrast with the Student test version in Figure ?7.
I'll admit it's a bit odd to talk about the cure before talking about the diagnosis, but as it happens
the Welch test can be specified as one of the ‘Independent Samples T-Test’ options in JASP, so this
is probably the best place to discuss it.
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The Welch test is very similar to the Student test. For example, the t-statistic that we use in the
Welch test is calculated in much the same way as it is for the Student test. That is, we take the
difference between the sample means and then divide it by some estimate of the standard error of
that difference _ _

po XLz X2

SE(X1 — X2)
The main difference is that the standard error calculations are different. If the two populations have
different standard deviations, then it's a complete nonsense to try to calculate a pooled standard

deviation estimate, because you're averaging apples and oranges.*®

But you can still estimate the standard error of the difference between sample means, it just ends

up looking different

_ _ 6’2 5’2
SE(Xl—X2> = ﬁiﬁ-ﬁz

The reason why it's calculated this way is beyond the scope of this book. What matters for our
purposes is that the t-statistic that comes out of the Welch t-test is actually somewhat different

to the one that comes from the Student t-test.

The second difference between Welch and Student is that the degrees of freedom are calculated
in a very different way. In the Welch test, the “degrees of freedom " doesn’'t have to be a whole
number any more, and it doesn't correspond all that closely to the “number of data points minus

the number of constraints” heuristic that |'ve been using up to this point.

The degrees of freedom are, in fact

(63/N1 + 63/N3)?
(63/N1)2/(Ny — 1) + (65/N2)2/(N2 — 1)

which is all pretty straightforward and obvious, right? Well, perhaps not. It doesn't really matter

df =

for our purposes. What matters is that you'll see that the "“df" value that pops out of a Welch

test tends to be a little bit smaller than the one used for the Student test, and it doesn't have to

be a whole number.

*8\Well, | guess you can average apples and oranges, and what you end up with is a delicious fruit smoothie. But
no one really thinks that a fruit smoothie is a very good way to describe the original fruits, do they?
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1.5.1 Doing the Welch test in JASP

If you tick the check box for the Welch test in the analysis we did above, then this is what it gives
you (Figure ?7?):
Independent Samples T-Test ¥

Independent Samples T-Test ¥

95% ClI for Mean Difference

Test Statistic df o Mean Difference SE Difference Lower Upper Cohen's d
grade Student 2.115 31.000 0.043 5.478 2.589 0.197 10.759 0.740
Welch 2.034 23.025 0.054 5.478 2.693 —-0.092 11.048 0.724

Figurel.12 Results showing the Welch test alongside the default Student’s t-test in JASP

The interpretation of this output should be fairly obvious. You read the output for the Welch's
test in the same way that you would for the Student’s test. You've got your descriptive statistics,

the test results and some other information. So that's all pretty easy.

Except, except...our result isn't significant anymore. When we ran the Student test we did get
a significant effect, but the Welch test on the same data set is not (t(23.02) = 2.03, p = .054).
What does this mean? Should we panic? Is the sky burning? Probably not. The fact that one test
is significant and the other isn't doesn't itself mean very much, especially since | kind of rigged the
data so that this would happen. As a general rule, it's not a good idea to go out of your way to
try to interpret or explain the difference between a p-value of .049 and a p-value of .051. If this
sort of thing happens in real life, the difference in these p-values is almost certainly due to chance.
What does matter is that you take a little bit of care in thinking about what test you use. The
Student test and the Welch test have different strengths and weaknesses. If the two populations
really do have equal variances, then the Student test is slightly more powerful (lower Type Il error
rate) than the Welch test. However, if they don’t have the same variances, then the assumptions of
the Student test are violated and you may not be able to trust it; you might end up with a higher
Type | error rate. So it's a trade off. However, in real life | tend to prefer the Welch test, because

almost no-one actually believes that the population variances are identical.

1.5.2 Assumptions of the test

The assumptions of the Welch test are very similar to those made by the Student t-test (see
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Section 7?), except that the Welch test does not assume homogeneity of variance. This leaves only
the assumption of normality and the assumption of independence. The specifics of these assumptions

are the same for the Welch test as for the Student test.

1.6

The paired-samples t-test

Regardless of whether we're talking about the Student test or the Welch test, an independent
samples t-test is intended to be used in a situation where you have two samples that are, well,
independent of one another. This situation arises naturally when participants are assigned randomly
to one of two experimental conditions, but it provides a very poor approximation to other sorts of
research designs. In particular, a repeated measures design, in which each participant is measured
(with respect to the same outcome variable) in both experimental conditions, is not suited for analysis
using independent samples t-tests. For example, we might be interested in whether listening to music
reduces people's working memory capacity. To that end, we could measure each person’s working
memory capacity in two conditions: with music, and without music. In an experimental design such
as this one, each participant appears in both groups. This requires us to approach the problem in a

different way, by using the paired samples t-test.

1.6.1 The data

The data set that we'll use this time comes from Dr Chico’s class.*® In her class students take
two major tests, one early in the semester and one later in the semester. To hear her tell it, she runs
a very hard class, one that most students find very challenging. But she argues that by setting hard
assessments students are encouraged to work harder. Her theory is that the first test is a bit of a
“wake up call” for students. When they realise how hard her class really is, they'll work harder for
the second test and get a better mark. Is she right? To test this, let's import the chico.csv file into
JASP. The chico data set contains three variables: an id variable that identifies each student in the
class, the grade_test1 variable that records the student grade for the first test, and the grade_test2

variable that has the grades for the second test.

If we look at the JASP spreadsheet it does seem like the class is a hard one (most grades are

between 50% and 60%), but it does look like there's an improvement from the first test to the

*9At this point we have Drs Harpo, Chico and Zeppo. No prizes for guessing who Dr Groucho is.
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second one.

T A A 1 A e I )

Descriptives T-Tests ANOVA Regression  Frequencies Factor
T
¥ Descriptive Statistics (/] (<] Results
id Variables P P
¥ Descriptive Statistics
grade_testl
grade_test2
Descriptive Statistics
grade_testl grade_test2
valid 20 20
Missing 0 0
Mean 56.980 58.385
Std. Deviation 6.616 6.406
Minimum 42.900 44.600
Maximum 71.700 72.300
5 ]

Split

Frequency tables (nominal and ordinal variables)
> Plots

B Statistics

Figurel.13 Descriptives for the two grade_ test variables in the chico data set

If we take a quick look at the descriptive statistics, in Figure ??, we see that this impression
seems to be supported. Across all 20 students the mean grade for the first test is 57%, but this
rises to 58% for the second test. Although, given that the standard deviations are 6.6% and 6.4%
respectively, it's starting to feel like maybe the improvement is just illusory; maybe just random
variation. This impression is reinforced when you see the means and confidence intervals plotted in
Figure ?7a. If we were to rely on this plot alone, looking at how wide those confidence intervals are,

we'd be tempted to think that the apparent improvement in student performance is pure chance.

Nevertheless, this impression is wrong. To see why, take a look at the scatterplot of the grades for
test 1 against the grades for test 2, shown in Figure ??b. In this plot each dot corresponds to the
two grades for a given student. If their grade for test 1 (x co-ordinate) equals their grade for test
2 (y co-ordinate), then the dot falls on the line. Points falling above the line are the students that
performed better on the second test. Critically, almost all of the data points fall above the diagonal
line: almost all of the students do seem to have improved their grade, if only by a small amount.

This suggests that we should be looking at the improvement made by each student from one test
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Figurel.14 Mean grade for test 1 and test 2, with associated 95% confidence intervals (panel
a). Scatterplot showing the individual grades for test 1 and test 2 (panel b). Histogram showing
the improvement made by each student in Dr Chico’s class (panel c). In panel ¢, notice that
almost the entire distribution is above zero: the vast majority of students did improve their
performance from the first test to the second one

to the next and treating that as our raw data. To do this, we'll need to create a new variable for
the improvement that each student makes, and add it to the chico data set. The easiest way to
do this is to compute a new variable. In JASP, click on the “+" at the right-most side of the data
columns, name the variable improvement, and select the “R" button. After you click the ‘Create

column’ button, you can enter the R code grade_test2 - grade_testl (see Figure 77).

Once we have computed this new improvement variable we can draw a histogram showing the
distribution of these improvement scores, shown in Figure ??c. When we look at the histogram, it's
very clear that there is a real improvement here. The vast majority of the students scored higher on

test 2 than on test 1, reflected in the fact that almost the entire histogram is above zero.

1.6.2 What is the paired samples t-test?

In light of the previous exploration, let's think about how to construct an appropriate t test. One
possibility would be to try to run an independent samples t-test using grade_testl and grade_test2
as the variables of interest. However, this is clearly the wrong thing to do as the independent samples
t-test assumes that there is no particular relationship between the two samples. Yet clearly that's
not true in this case because of the repeated measures structure in the data. To use the language

that | introduced in the last section, if we were to try to do an independent samples t-test, we would
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Computed Column: improvement

#Enter your R code here :)

grade_test2 - grade_testl

7] Compute column x
T & id grade_testl grade_test2 J& improvement +
1 studentl 42.9 44.6 17
2 student2 51.8 54 2.2
3 student3 717 723 0.6
4 student4 516 53.4 1.8
5 student5 63.5 63.8 0.3
[ student6 58 59.3 1.3
7 student? 59.8 60.8 1
8 student8 50.8 516 0.8
9 student9 62.5 64.3 1.8
10 student10 61.9 63.2 13
11 studentll 50.4 518 14
12 student12 526 522 -0.4
13 | student13 63 63 o
14 studentl4 58.3 60.5 2.2
15 student15 53.3 57.1 3.8

be conflating the within subject differences (which is what we're interested in testing) with the

between subject variability (which we are not).

The solution to the problem is obvious, | hope, since we already did all the hard work in the previous
section. Instead of running an independent samples t-test on grade_test1 and grade_test2, we run
a one-sample t-test on the within-subject difference variable, improvement. To formalise this slightly,
if Xj1 is the score that the /-th participant obtained on the first variable, and X5 is the score that

the same person obtained on the second one, then the difference score is:
Dj = X1 — Xz

Notice that the difference scores is variable 1 minus variable 2 and not the other way around, so if
we want improvement to correspond to a positive valued difference, we actually want “test 2" to be
our “variable 1". Equally, we would say that up = 1 — > is the population mean for this difference
variable. So, to convert this to a hypothesis test, our null hypothesis is that this mean difference is
zero and the alternative hypothesis is that it is not

Ho: wup=20

Hi: wup+#0
This is assuming we're talking about a two-sided test here. This is more or less identical to the way
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we described the hypotheses for the one-sample t-test. The only difference is that the specific value
that the null hypothesis predicts is 0. And so our t-statistic is defined in more or less the same way

too. If we let D denote the mean of the difference scores, then

which is

t =

6p/VN

where Gp is the standard deviation of the difference scores. Since this is just an ordinary, one-sample
t-test, with nothing special about it, the degrees of freedom are still N — 1. And that’ s it. The
paired samples t-test really isn’ t a new test at all. It" s a one-sample t-test, but applied to the
difference between two variables. It's actually very simple. The only reason it merits a discussion
as long as the one we've just gone through is that you need to be able to recognise when a paired

samples test is appropriate, and to understand why it's better than an independent samples t test.

1.6.3 Doing the test in JASP

How do you do a paired samples t-test in JASP? One possibility is to follow the process | outlined
above. That is, create a “difference” variable and then run a one sample t-test on that. Since we've

already created a variable called improvement, let's do that and see what we get, Figure 77.
One Sample T-Test

One Sample T-Test

95% Cl for Mean Difference
t df p Mean Difference Lower Upper Cohen's d

improvement 6.475 19 < .001 1.405 0.951 1.859 1.448
Nore. Student's t-test.
Note. For the Student t-test, location parameter is given by mean difference d.
Note. For the Student t-test, effect size is given by Cohen's d.

Figurel.16 Results showing a one sample t-test on paired difference scores

The output shown in Figure ?? is (obviously) formatted exactly the same was as it was the last
time we used the ‘One Sample T-Test' analysis (Section ??), and it confirms our intuition. There's
an average improvement of 1.4 points from test 1 to test 2, and this is significantly different from
0 (t(19) = 6.48, p < .001).
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However, suppose you're lazy and you don't want to go to all the effort of creating a new variable.
Or perhaps you just want to keep the difference between one-sample and paired-samples tests clear
in your head. If so, you can use the JASP ‘Paired Samples T-Test' analysis. As you will see, the
numbers are identical to those that come from the one sample test, which of course they have to

be given that the paired samples t-test is just a one sample test under the hood.

1.7

One sided tests

When introducing the theory of null hypothesis tests, | mentioned that there are some situations
when it's appropriate to specify a one-sided test (see Section ??). So far all of the t-tests have been
two-sided tests. For instance, when we specified a one sample t-test for the grades in Dr Zeppo's
class the null hypothesis was that the true mean was 67.5%. The alternative hypothesis was that
the true mean was greater than or less than 67.5%. Suppose we were only interested in finding out
if the true mean is greater than 67.5%, and have no interest whatsoever in testing to find out if the
true mean is lower than 67.5%. If so, our null hypothesis would be that the true mean is 67.5% or
less, and the alternative hypothesis would be that the true mean is greater than 67.5%. In JASP,
for the ‘One Sample T-Test’ analysis, you can specify this by clicking on the ‘> Test Value' option,

under ‘Alt. Hypothesis. When you have done this, you will get the results as shown in 77?.

One Sample T-Test ¥

One Sample T-Test

95% CI for Mean Difference
t df "] Mean Difference Lower Upper Cohen's d

® 2.255 19 0.018 4.800 1.119 ] 0.504

MNote. Student's t-test.

Note. For the Student t-test, location parameter is given by mean difference 4.

Note. For the Student t-test, effect size is given by Cohen's 4.

Note. For all tests, the alternative hypothesis specifies that the mean is greater than 67.5.

Figurel.17 JASP results showing a '‘One Sample T-Test" where the actual hypothesis is one
sided, i.e. that the true mean is greater than 67.5%

Notice that there are a few changes from the output that we saw last time. Most important is
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the fact that the actual hypothesis has changed, to reflect the different test. The second thing to
note is that although the t-statistic and degrees of freedom have not changed, the p-value has.
This is because the one-sided test has a different rejection region from the two-sided test. If you've
forgotten why this is and what it means, you may find it helpful to read back over Chapter ??, and
Section ?? in particular. The third thing to note is that the confidence interval is different too: it
now reports a “one-sided” confidence interval rather than a two-sided one. In a two-sided confidence
interval we're trying to find numbers a and b such that we're confident that, if we were to repeat
the study many times, then 95% of the time the mean would lie between a and b. In a one-sided
confidence interval, we're trying to find a single number a such that we're confident that 95% of
the time the true mean would be greater than a (or less than a if you selected ‘< Test Value' in

the ‘Alt. Hypothesis' section).

So that’s how to do a one-sided one sample t-test. However, all versions of the t-test can be one-
sided. For an independent samples t test, you could have a one-sided test if you're only interested in
testing to see if group A has higher scores than group B, but have no interest in finding out if group
B has higher scores than group A. Let's suppose that, for Dr Harpo's class, you wanted to see if
Anastasia’s students had higher grades than Bernadette's. For this analysis, in the 'Alt. Hypothesis’

options, specify that ‘Group 1 > Group2’ You should get the results shown in Figure 77.
Independent Samples T-Test

Independent Samples T-Test

95% CI for Mean Difference
t df il Mean Difference SE Difference Lower Upper Cohen's d

grade 2.115 31.000 0.021 5.478 2.589 1.087 00 0.740

Note, Student's t-test.
Note. For all tests, the alternative hypothesis specifies that group Anastasia is greater than group Bernadette,

Figurel.18 JASP results showing an ‘Independent Samples T-Test” where the actual hypoth-
esis is one sided, i.e. that Anastasia's students had higher grades than Bernadette's

Again, the output changes in a predictable way. The definition of the alternative hypothesis has
changed, the p-value has changed, and it now reports a one-sided confidence interval rather than a

two-sided one.

What about the paired samples t-test? Suppose we wanted to test the hypothesis that grades
go up from test 1 to test 2 in Dr Chico's class, and are not prepared to consider the idea that the
grades go down. In JASP you would do this by specifying, under the ‘Alt. Hypotheses' option, that
grade_test2 (‘Measure 1" in JASP, because we copied this first into the paired variables box) >
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grade_testl (‘Measure 2' in JASP). You should get the results shown in Figure ?7.

Paired Samples T-Test

Paired Samples T-Test

95% CI for Mean Difference

t df p Mean Difference SE Difference Lower Upper Cohen's d

grade_test2 - grade_testl 6.475 19 < .001 1.405 0.217 1.030 o 1.448

Note. Student's t-test.
Note, All tests, hypothesis is measurement one greater than measurement two.

Figurel.19 JASP results showing a ‘Paired Samples T-Test’ where the actual hypothesis is
one sided, i.e. that grade_test2 (‘Measure 1') > grade_testl (‘Measure 2')

Yet again, the output changes in a predictable way. The hypothesis has changed, the p-value has

changed, and the confidence interval is now one-sided.

1.8

Effect size

The most commonly used measure of effect size for a t-test is Cohen’s d (Cohen1988). It's a
very simple measure in principle, with quite a few wrinkles when you start digging into the details.
Cohen himself defined it primarily in the context of an independent samples t-test, specifically the
Student test. In that context, a natural way of defining the effect size is to divide the difference
between the means by an estimate of the standard deviation. In other words, we're looking to

calculate something along the lines of this:

(mean 1) — (mean 2)
std dev

d=

and he suggested a rough guide for interpreting d in Table ??. You'd think that this would be pretty
unambiguous, but it's not. This is largely because Cohen wasn’t too specific on what he thought
should be used as the measure of the standard deviation (in his defence he was trying to make a
broader point in his book, not nitpick about tiny details). As discussed by McGrath2006, there
are several different versions in common usage, and each author tends to adopt slightly different
notation. For the sake of simplicity (as opposed to accuracy), I'll use d to refer to any statistic that
you calculate from the sample, and use ¢ to refer to a theoretical population effect. Obviously, that

does mean that there are several different things all called d.
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Tablel.1 A (very) rough guide to interpreting Cohen's d. My personal recommendation is to
not use these blindly. The d statistic has a natural interpretation in and of itself. It re-describes
the difference in means as the number of standard deviations that separates those means. So
it's generally a good idea to think about what that means in practical terms. In some contexts
a “small” effect could be of big practical importance. In other situations a “large” effect may
not be all that interesting.

d-value rough interpretation

about 0.2 | “small” effect
about 0.5 | “moderate” effect

about 0.8 | "large"” effect

My suspicion is that the only time that you would want Cohen's d is when you're running a t-test,

and JASP has an option to calculate the effect size for all the different flavours of t-test it provides.

1.8.1 Cohen’s d from one sample

The simplest situation to consider is the one corresponding to a one-sample t-test. In this case,
this is the one sample mean X and one (hypothesised) population mean p, to compare it to. Not
only that, there's really only one sensible way to estimate the population standard deviation. We
just use our usual estimate 6. Therefore, we end up with the following as the only way to calculate
d

g= Xt

o)
When we look back at the results in Figure 77, the effect size value is Cohen's d = 0.504. Overall,
then, the psychology students in Dr Zeppo's class are achieving grades (mean = 72.3%) that are
about 0.5 standard deviations higher than the level that you'd expect (67.5%) if they were performing
at the same level as other students. Judged against Cohen's rough guide, this is a moderate effect

size.

1.8.2 Cohen’s d from a Student’s t test

The majority of discussions of Cohen's d focus on a situation that is analogous to Student's
independent samples t test, and it's in this context that the story becomes messier, since there are
several different versions of d that you might want to use in this situation. To understand why there

are multiple versions of d, it helps to take the time to write down a formula that corresponds to the
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true population effect size §. It's pretty straightforward,
5 = M1 — M2
o
where, as usual, w1 and w, are the population means corresponding to group 1 and group 2 respec-
tively, and o is the standard deviation (the same for both populations). The obvious way to estimate
0 is to do exactly the same thing that we did in the t-test itself, i.e., use the sample means as the
top line and a pooled standard deviation estimate for the bottom line
d = @
Op
where G, is the exact same pooled standard deviation measure that appears in the t-test. This is
the most commonly used version of Cohen's d when applied to the outcome of a Student t-test,

and is the one provided in JASP. It is sometimes referred to as Hedges' g statistic (Hedges1981).

However, there are other possibilities which I'll briefly describe. Firstly, you may have reason to
want to use only one of the two groups as the basis for calculating the standard deviation. This
approach (often called Glass’ A, pronounced delta) only makes most sense when you have good
reason to treat one of the two groups as a purer reflection of “natural variation” than the other.
This can happen if, for instance, one of the two groups is a control group. Secondly, recall that in
the usual calculation of the pooled standard deviation we divide by N — 2 to correct for the bias in
the sample variance. In one version of Cohen’s d this correction is omitted, and instead we divide
by N. This version makes sense primarily when you're trying to calculate the effect size in the
sample rather than estimating an effect size in the population. Finally, there is a version based on
Hedges1985, who point out there is a small bias in the usual (pooled) estimation for Cohen'’s d.

Thus they introduce a small correction by multiplying the usual value of d by (N —3)/(N — 2.25).

In any case, ignoring all those variations that you could make use of if you wanted, let's have
a look at the default version in JASP. In Figure ?? Cohen's d = 0.740, indicating that the grade
scores for students in Anastasia's class are, on average, 0.74 standard deviations higher than the
grade scores for students in Bernadette's class. For a Welch test, the estimated effect size is the

same (Figure 77).

1.8.3 Cohen’s d from a paired-samples test

Finally, what should we do for a paired samples t-test? In this case, the answer depends on what
it is you're trying to do. JASP assumes that you want to measure your effect sizes relative to the
distribution of difference scores, and the measure of d that you calculate is:

D
6p
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where 0p is the estimate of the standard deviation of the differences. In Figure ?? Cohen's d =
1.45, indicating that the time 2 grade scores are, on average, 1.45 standard deviations higher than

the time 1 grade scores.

This is the version of Cohen's d that gets reported by the JASP ‘Paired Samples T-Test’ analysis.
The only wrinkle is figuring out whether this is the measure you want or not. To the extent that
you care about the practical consequences of your research, you often want to measure the effect
size relative to the original variables, not the difference scores (e.g., the 1 point improvement in
Dr Chico's class over time is pretty small when measured against the amount of between-student
variation in grades), in which case you use the same versions of Cohen's d that you would use for a
Student or Welch test. It's not so straightforward to do this in JASP; essentially you have to change

the structure of the data in the spreadsheet view so | won't go into that here.

1.9

Checking the normality of a sample

All of the tests that we have discussed so far in this chapter have assumed that the data are
normally distributed. This assumption is often quite reasonable, because the central limit theorem
(Section ??) does tend to ensure that many real world quantities are normally distributed. Any
time that you suspect that your variable is actually an average of lots of different things, there's a
pretty good chance that it will be normally distributed, or at least close enough to normal that you
can get away with using t-tests. However, life doesn't come with guarantees, and besides there are
lots of ways in which you can end up with variables that are highly non-normal. For example, any
time you think that your variable is actually the minimum of lots of different things, there's a very
good chance it will end up quite skewed. In psychology, response time (RT) data is a good example
of this. If you suppose that there are lots of things that could trigger a response from a human
participant, then the actual response will occur the first time one of these trigger events occurs.*!?
This means that RT data are systematically non-normal. Okay, so if normality is assumed by all
the tests, and is mostly but not always satisfied (at least approximately) by real world data, how

can we check the normality of a sample? In this section | discuss two methods: QQ plots and the
Shapiro-Wilk test.
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Figurel.20 Histogram (panel a) and normal QQ plot (panel b) of normal.data, a normally

distributed sample with 100 observations. The Shapiro-Wilk statistic associated with these data
is W = .99, indicating that no significant departures from normality were detected (p = .73).

1.9.1 QQ plots

One way to check whether a sample violates the normality assumption is to draw a “QQ plot”
(Quantile-Quantile plot). This allows you to visually check whether you're seeing any systematic
violations. In a QQ plot, each observation is plotted as a single dot. The x co-ordinate is the
theoretical quantile that the observation should fall in if the data were normally distributed (with
mean and variance estimated from the sample), and on the y co-ordinate is the actual quantile of the
data within the sample. If the data are normal, the dots should form a straight line. For instance,
lets see what happens if we generate data by sampling from a normal distribution, and then drawing
a QQ plot. The results are shown in Figure ??7. As you can see, these data form a pretty straight
line; which is no surprise given that we sampled them from a normal distribution! In contrast, have
a look at the two data sets shown in Figure ??. The top panels show the histogram and a QQ plot
for a data set that is highly skewed: the QQ plot curves upwards. The lower panels show the same
plots for a heavy tailed (i.e., high kurtosis) data set: in this case the QQ plot flattens in the middle

and curves sharply at either end.

*0This is a massive oversimplification.
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Skewed Data Normal Q-Q Plot
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Figurel.21 In the top row, a histogram (panel a) and normal QQ plot (panel b) of the 100
observations in a skewed.data set. The skewness of the data here is 1.94, and is reflected
in a QQ plot that curves upwards. As a consequence, the Shapiro-Wilk statistic is W = .80,
reflecting a significant departure from normality (p < .001). The bottom row shows the same
plots for a heavy tailed data set, again consisting of 100 observations. In this case the heavy
tails in the data produce a high kurtosis (2.80), and cause the QQ plot to flatten in the middle,
and curve away sharply on either side. The resulting Shapiro-Wilk statistic is W = .93, again
reflecting significant non-normality (p < .001).
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1.9.2 Shapiro-Wilk tests

QQ plots provide a nice way to informally check the normality of your data, but sometimes you'll
want to do something a bit more formal and the Shapiro-Wilk test (Shapiro1965) is probably
what you're looking for.*1' As you'd expect, the null hypothesis being tested is that a set of N

observations is normally distributed.

The test statistic that it calculates is conventionally denoted as W, and it's calculated as follows.
First, we sort the observations in order of increasing size, and let X; be the smallest value in the

sample, X, be the second smallest and so on. Then the value of W is given by

(Z,N:l a,-X,->2
Z/N=1(Xi - )_02

where X is the mean of the observations, and the a; values are ... mumble, mumble ... something

complicated that is a bit beyond the scope of an introductory text.

Because it's a little hard to explain the maths behind the W statistic, a better idea is to give a
broad brush description of how it behaves. Unlike most of the test statistics that we'll encounter in
this book, it's actually small values of W that indicate departure from normality. The W statistic
has a maximum value of 1, which occurs when the data look “perfectly normal”™. The smaller the
value of W the less normal the data are. However, the sampling distribution for W, which is not one
of the standard ones that | discussed in Chapter ?? and is in fact a complete pain in the arse to work
with, does depend on the sample size N. To give you a feel for what these sampling distributions
look like, I've plotted three of them in Figure ??. Notice that, as the sample size starts to get large,
the sampling distribution becomes very tightly clumped up near W = 1, and as a consequence, for

larger samples W doesn’t have to be very much smaller than 1 in order for the test to be significant.

To get the Shapiro-Wilk statistic in JASP t-tests, check the option for ‘Normality’ listed under
‘Assumption checks’. In the randomly sampled data (N = 100) we used for the QQ plot, the
value for the Shapiro-Wilk normality test statistic was W = 0.99 with a p-value of 0.69. So, not
surprisingly, we have no evidence that these data depart from normality. When reporting the results

for a Shapiro-Wilk test, you should (as usual) make sure to include the test statistic W and the p

*11Ejther that, or the Kolmogorov-Smirnov test, which is probably more traditional than the Shapiro-Wilk. Although
most things I’ ve read seem to suggest Shapiro-Wilk is the better test of normality, the Kolomogorov- Smirnov is a
general purpose test of distributional equivalence that can be adapted to handle other kinds of distribution tests. In
JASP the Shapiro-Wilk test is preferred.
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Sampling distribution of W
(for normally distributed data)
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Figurel.22 Sampling distribution of the Shapiro-Wilk W statistic, under the null hypothesis
that the data are normally distributed, for samples of size 10, 20 and 50. Note that small
values of W indicate departure from normality.

value, though given that the sampling distribution depends so heavily on N it would probably be a

politeness to include N as well.

1.9.3 Example

In the meantime, it's probably worth showing you an example of what happens to the QQ plot
and the Shapiro-Wilk test when the data turn out to be non-normal. For that, let's look at the
distribution of our AFL winning margins data, which if you remember back to Chapter ?? didn't

look like they came from a normal distribution at all. Here's what happens to the QQ plot:

- 49 -



Normal Q-Q Plot
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And when we run the Shapiro-Wilk test on the AFL margins data, we get a value for the Shapiro-
Wilk normality test statistic of W = 0.94, and p-value = 9.481e-07. This is clearly a significant

departure from normality!

1.10

Testing non-normal data with Wilcoxon tests

Okay, suppose your data turn out to be pretty substantially non-normal, but you still want to run
something like a t-test? This situation occurs a lot in real life. For the AFL winning margins data,
for instance, the Shapiro-Wilk test made it very clear that the normality assumption is violated. This

is the situation where you want to use Wilcoxon tests.

Like the t-test, the Wilcoxon test comes in two forms, one-sample and two-sample, and they're
used in more or less the exact same situations as the corresponding t-tests. Unlike the t-test, the
Wilcoxon test doesn’t assume normality, which is nice. In fact, they don't make any assumptions
about what kind of distribution is involved. In statistical jargon, this makes them nonparametric
tests. While avoiding the normality assumption is nice, there's a drawback: the Wilcoxon test is
usually less powerful than the t-test (i.e., higher Type Il error rate). | won't discuss the Wilcoxon

tests in as much detail as the t-tests, but I'll give you a brief overview.
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1.10.1 Two sample Mann-Whitney U test

I'll start by describing the Mann-Whitney U test, since it's actually simpler than the one sample
version. Suppose we're looking at the scores of 10 people on some test. Since my imagination has
now failed me completely, let's pretend it's a “test of awesomeness” and there are two groups of
people, “A” and “B". I'm curious to know which group is more awesome. The data are included
in the file awesome.csv, and there are two variables apart from the usual ID variable: scores and
group.

As long as there are no ties (i.e., people with the exact same awesomeness score) then the test
that we want to do is surprisingly simple. All we have to do is construct a table that compares
every observation in group A against every observation in group B. Whenever the group A datum

is larger, we place a check mark in the table:

group B
145 104 124 11.7 13.0
6.4
10.7 : v
group A 11.9 . v . v
7.3
10.0

We then count up the number of checkmarks. This is our test statistic, W.*12 The actual sampling
distribution for W is somewhat complicated, and I'll skip the details. For our purposes, it's sufficient
to note that the interpretation of W is qualitatively the same as the interpretation of t or z. That
is, if we want a two-sided test then we reject the null hypothesis when W is very large or very small,

but if we have a directional (i.e., one-sided) hypothesis then we only use one or the other.

In JASP, if we run an ‘Independent Samples T-Test' with scores as the dependent variable. and
group as the grouping variable, and then under the options for ‘tests’ check the option for ‘Mann-
Whitney', we will get results showing that U = 3 (i.e., the same number of checkmarks as shown
above), and a p-value = 0.05556.

1.10.2 One sample Wilcoxon test

What about the one sample Wilcoxon test (or equivalently, the paired samples Wilcoxon test)?

*12 Actually, there are two different versions of the test statistic that differ from each other by a constant value. The
version that I've described is the one that JASP calculates.
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Suppose I'm interested in finding out whether taking a statistics class has any effect on the happiness
of students. My data is in the happiness.csv file. What I've measured here is the happiness of each
student before taking the class and after taking the class, and the change score is the difference
between the two. Just like we saw with the t-test, there's no fundamental difference between doing a
paired-samples test using before and after, versus doing a one-sample test using the change scores.
As before, the simplest way to think about the test is to construct a tabulation. The way to do it
this time is to take those change scores that are positive differences, and tabulate them against all
the complete sample. What you end up with is a table that looks like this:
all differences
-24 -14 -10 7 -6 -38 2 -35 -30 5

7 . : .V .V : .
positive differences 2 . . . . . .V
5 ) ) : ) ) .V ) .V

Counting up the tick marks this time we get a test statistic of W = 7. As before, if our test is
two sided, then we reject the null hypothesis when W is very large or very small. As far as running
it in JASP goes, it's pretty much what you'd expect. For the one-sample version, you specify the
‘Wilcoxon signed-rank’ option under ‘Tests' in the ‘One Sample T-Test’ analysis window. This gives
you Wilcoxon W = 7, p-value = 0.037. As this shows, we have a significant effect. Evidently, taking
a statistics class does have an effect on your happiness. Switching to a paired samples version of

the test won't give us a different answer, of course; see Figure 77.
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Figurel.23 JASP screen showing results for one sample and paired sample Wilcoxon non-parametric tests
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