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FIFERTKMIEAL 2> TWE T, The experimenter takes the card away and places it on a table
in an adjacent room. The card is placed black side up or white side up completely at random, with
the randomisation occurring only after the experimenter has left the room with the participant. A
second experimenter comes in and asks the participant which side of the card is now facing upwards.
It's purely a one-shot experiment. Each person sees only one card and gives only one answer, and at
no stage is the participant actually in contact with someone who knows the right answer. My data
set, therefore, is very simple. | have asked the question of N people and some number X of these
people have given the correct response. To make things concrete, let's suppose that | have tested
N = 100 people and X = 62 of these got the answer right. A surprisingly large number, sure, but
is it large enough for me to feel safe in claiming I've found evidence for ESP? This is the situation
where hypothesis testing comes in useful. However, before we talk about how to test hypotheses,

we need to be clear about what we mean by hypotheses.

1.1.1 Research hypotheses versus statistical hypotheses

The first distinction that you need to keep clear in your mind is between research hypotheses and
statistical hypotheses. In my ESP study my overall scientific goal is to demonstrate that clairvoyance
exists. In this situation | have a clear research goal: | am hoping to discover evidence for ESP. In
other situations | might actually be a lot more neutral than that, so | might say that my research goal
is to determine whether or not clairvoyance exists. Regardless of how | want to portray myself, the
basic point that I'm trying to convey here is that a research hypothesis involves making a substantive,
testable scientific claim. If you are a psychologist then your research hypotheses are fundamentally

about psychological constructs. Any of the following would count as research hypotheses:
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= Listening to music reduces your ability to pay attention to other things. This is a claim
about the causal relationship between two psychologically meaningful concepts (listening to
music and paying attention to things), so it's a perfectly reasonable research hypothesis.

» [ntelligence is related to personality. Like the last one, this is a relational claim about two
psychological constructs (intelligence and personality), but the claim is weaker: correlational
not causal.

» Intelligence is speed of information processing. This hypothesis has a quite different charac-
ter. It's not actually a relational claim at all. It's an ontological claim about the fundamental
character of intelligence (and I'm pretty sure it's wrong). It's worth expanding on this one
actually. It's usually easier to think about how to construct experiments to test research
hypotheses of the form “does X affect Y?" than it is to address claims like “what is X?" And
in practice what usually happens is that you find ways of testing relational claims that follow
from your ontological ones. For instance, if | believe that intelligence is speed of information
processing in the brain, my experiments will often involve looking for relationships between
measures of intelligence and measures of speed. As a consequence most everyday research
questions do tend to be relational in nature, but they're almost always motivated by deeper

ontological questions about the state of nature.

Notice that in practice, my research hypotheses could overlap a lot. My ultimate goal in the ESP
experiment might be to test an ontological claim like “ESP exists”, but | might operationally restrict
myself to a narrower hypothesis like “Some people can ‘see’ objects in a clairvoyant fashion”. That
said, there are some things that really don’t count as proper research hypotheses in any meaningful

sense:

= Love is a battlefield. This is too vague to be testable. Whilst it's okay for a research
hypothesis to have a degree of vagueness to it, it has to be possible to operationalise your
theoretical ideas. Maybe I'm just not creative enough to see it, but | can’t see how this can be
converted into any concrete research design. If that's true then this isn't a scientific research
hypothesis, it's a pop song. That doesn't mean it's not interesting. A lot of deep questions
that humans have fall into this category. Maybe one day science will be able to construct
testable theories of love, or to test to see if God exists, and so on. But right now we can't,
and | wouldn’t bet on ever seeing a satisfying scientific approach to either.

= The first rule of tautology club is the first rule of tautology club. This is not a substantive
claim of any kind. It's true by definition. No conceivable state of nature could possibly be
inconsistent with this claim. We say that this is an unfalsifiable hypothesis, and as such it is

outside the domain of science. Whatever else you do in science your claims must have the
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possibility of being wrong.

= More people in my experiment will say “yes” than “no”. This one fails as a research
hypothesis because it's a claim about the data set, not about the psychology (unless of course
your actual research question is whether people have some kind of “yes” bias!). Actually, this

hypothesis is starting to sound more like a statistical hypothesis than a research hypothesis.

As you can see, research hypotheses can be somewhat messy at times and ultimately they are
scientific claims. Statistical hypotheses are neither of these two things. Statistical hypotheses
must be mathematically precise and they must correspond to specific claims about the characteristics
of the data generating mechanism (i.e., the “population”). Even so, the intent is that statistical
hypotheses bear a clear relationship to the substantive research hypotheses that you care about!
For instance, in my ESP study my research hypothesis is that some people are able to see through
walls or whatever. What | want to do is to “map” this onto a statement about how the data were
generated. So let's think about what that statement would be. The quantity that I'm interested in
within the experiment is P("“correct”), the true-but-unknown probability with which the participants
in my experiment answer the question correctly. Let's use the Greek letter 6 (theta) to refer to this

probability. Here are four different statistical hypotheses:

» If ESP doesn't exist and if my experiment is well designed then my participants are just
guessing. So | should expect them to get it right half of the time and so my statistical
hypothesis is that the true probability of choosing correctly is 6 = 0.5.

= Alternatively, suppose ESP does exist and participants can see the card. If that's true people
will perform better than chance and the statistical hypothesis is that 8 > 0.5.

= A third possibility is that ESP does exist, but the colours are all reversed and people don’t
realise it (okay, that's wacky, but you never know). If that's how it works then you'd expect
people's performance to be below chance. This would correspond to a statistical hypothesis
that 8 < 0.5.

» Finally, suppose ESP exists but | have no idea whether people are seeing the right colour
or the wrong one. In that case the only claim | could make about the data would be that
the probability of making the correct answer is not equal to 0.5. This corresponds to the

statistical hypothesis that 6 # 0.5.

All of these are legitimate examples of a statistical hypothesis because they are statements about a

population parameter and are meaningfully related to my experiment.

What this discussion makes clear, | hope, is that when attempting to construct a statistical

hypothesis test the researcher actually has two quite distinct hypotheses to consider. First, he or
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she has a research hypothesis (a claim about psychology), and this then corresponds to a statistical

hypothesis (a claim about the data generating population). In my ESP example these might be:

Dani's research hypothesis: "ESP exists”
Dani’'s statistical hypothesis: 6 # 0.5

And a key thing to recognise is this. A statistical hypothesis test is a test of the statistical
hypothesis, not the research hypothesis. If your study is badly designed then the link between your
research hypothesis and your statistical hypothesis is broken. To give a silly example, suppose that
my ESP study was conducted in a situation where the participant can actually see the card reflected
in a window. If that happens | would be able to find very strong evidence that 8 # 0.5, but this

would tell us nothing about whether “ESP exists".

1.1.2  Null hypotheses and alternative hypotheses

So far, so good. | have a research hypothesis that corresponds to what | want to believe about
the world, and | can map it onto a statistical hypothesis that corresponds to what | want to believe
about how the data were generated. It's at this point that things get somewhat counter-intuitive
for a lot of people. Because what I'm about to do is invent a new statistical hypothesis (the “null”
hypothesis, Hp) that corresponds to the exact opposite of what | want to believe, and then focus
exclusively on that almost to the neglect of the thing I'm actually interested in (which is now called
the “alternative” hypothesis, H1). In our ESP example, the null hypothesis is that 8 = 0.5, since
that's what we'd expect if ESP didn't exist. My hope, of course, is that ESP is totally real and
so the alternative to this null hypothesis is 8 # 0.5. In essence, what we're doing here is dividing
up the possible values of 6 into two groups: those values that | really hope aren't true (the null),
and those values that I'd be happy with if they turn out to be right (the alternative). Having done
so, the important thing to recognise is that the goal of a hypothesis test is not to show that the
alternative hypothesis is (probably) true. The goal is to show that the null hypothesis is (probably)
false. Most people find this pretty weird.

The best way to think about it, in my experience, is to imagine that a hypothesis test is a criminal
trial**, the trial of the null hypothesis. The null hypothesis is the defendant, the researcher is the
prosecutor, and the statistical test itself is the judge. Just like a criminal trial, there is a presumption

of innocence. The null hypothesis is deemed to be true unless you, the researcher, can prove beyond

*4This analogy only works if you're from an adversarial legal system like UK/US/Australia. As | understand these
things, the French inquisitorial system is quite different.
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a reasonable doubt that it is false. You are free to design your experiment however you like (within
reason, obviously!) and your goal when doing so is to maximise the chance that the data will yield
a conviction for the crime of being false. The catch is that the statistical test sets the rules of the
trial and those rules are designed to protect the null hypothesis, specifically to ensure that if the
null hypothesis is actually true the chances of a false conviction are guaranteed to be low. This is
pretty important. After all, the null hypothesis doesn't get a lawyer, and given that the researcher

is trying desperately to prove it to be false someone has to protect it.

1.2

Summary

Null hypothesis testing is one of the most ubiquitous elements to statistical theory. The vast
majority of scientific papers report the results of some hypothesis test or another. As a consequence
it is almost impossible to get by in science without having at least a cursory understanding of what
a p-value means, making this one of the most important chapters in the book. As usual, I'll end the

chapter with a quick recap of the key ideas that we've talked about:

» Research hypotheses and statistical hypotheses. Null and alternative hypotheses. (Sec-
tion ?77).

» Type 1 and Type 2 errors (Section ?7?)

= Test statistics and sampling distributions (Section ?7)

» Hypothesis testing as a decision making process (Section ?7?)

= p-values as “soft" decisions (Section 77)

= Writing up the results of a hypothesis test (Section ?7)

= Running the hypothesis test in practice (Section ?7?)

= Effect size and power (Section ?7)

= A few issues to consider regarding hypothesis testing (Section ?77?)

Later in the book, in Chapter ??, I'll revisit the theory of null hypothesis tests from a Bayesian
perspective and introduce a number of new tools that you can use if you aren’t particularly fond of
the orthodox approach. But for now, though, we're done with the abstract statistical theory, and

we can start discussing specific data analysis tools.
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1.4

Test statistics and sampling distributions

At this point we need to start talking specifics about how a hypothesis test is constructed. To
that end, let's return to the ESP example. Let's ignore the actual data that we obtained, for the

moment, and think about the structure of the experiment. Regardless of what the actual numbers

- 8-



are, the form of the data is that X out of V people correctly identified the colour of the hidden card.
Moreover, let's suppose for the moment that the null hypothesis really is true, that ESP doesn't
exist and the true probability that anyone picks the correct colour is exactly 8 = 0.5. What would
we expect the data to look like? Well, obviously we'd expect the proportion of people who make the
correct response to be pretty close to 50%. Or, to phrase this in more mathematical terms, we'd say
that X/N is approximately 0.5. Of course, we wouldn't expect this fraction to be exactly 0.5. If, for
example, we tested N = 100 people and X = 53 of them got the question right, we'd probably be
forced to concede that the data are quite consistent with the null hypothesis. On the other hand,
if X = 99 of our participants got the question right then we'd feel pretty confident that the null
hypothesis is wrong. Similarly, if only X = 3 people got the answer right we'd be similarly confident
that the null was wrong. Let's be a little more technical about this. We have a quantity X that
we can calculate by looking at our data. After looking at the value of X we make a decision about
whether to believe that the null hypothesis is correct, or to reject the null hypothesis in favour of

the alternative. The name for this thing that we calculate to guide our choices is a test statistic.

Having chosen a test statistic, the next step is to state precisely which values of the test statistic
would cause is to reject the null hypothesis, and which values would cause us to keep it. In order
to do so we need to determine what the sampling distribution of the test statistic would be if
the null hypothesis were actually true (we talked about sampling distributions earlier in Section 77).
Why do we need this? Because this distribution tells us exactly what values of X our null hypothesis
would lead us to expect. And, therefore, we can use this distribution as a tool for assessing how

closely the null hypothesis agrees with our data.

How do we actually determine the sampling distribution of the test statistic? For a lot of hypothesis
tests this step is actually quite complicated, and later on in the book you'll see me being slightly
evasive about it for some of the tests (some of them | don't even understand myself). However,
sometimes it's very easy. And, fortunately for us, our ESP example provides us with one of the easiest
cases. Our population parameter 6 is just the overall probability that people respond correctly when
asked the question, and our test statistic X is the count of the number of people who did so out of
a sample size of N. We've seen a distribution like this before, in Section ??, and that's exactly what
the binomial distribution describes! So, to use the notation and terminology that | introduced in
that section, we would say that the null hypothesis predicts that X is binomially distributed, which

is written
X ~ Binomial(8, N)

Since the null hypothesis states that 8 = 0.5 and our experiment has N = 100 people, we have
the sampling distribution we need. This sampling distribution is plotted in Figure ??. No surprises

really, the null hypothesis says that X = 50 is the most likely outcome, and it says that we're almost
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Sampling Distribution for X if the Null is True

Probability
0.04 0.06 0.08
| | |

0.02
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Number of Correct Responses (X)

0.00

Figurel.1 The sampling distribution for our test statistic X when the null hypothesis is true.
For our ESP scenario this is a binomial distribution. Not surprisingly, since the null hypothesis
says that the probability of a correct response is 6 = .5, the sampling distribution says that
the most likely value is 50 (out of 100) correct responses. Most of the probability mass lies
between 40 and 60.

certain to see somewhere between 40 and 60 correct responses.

1.5

Making decisions

Okay, we're very close to being finished. We've constructed a test statistic (X) and we chose this
test statistic in such a way that we're pretty confident that if X is close to N/2 then we should retain
the null, and if not we should reject it. The question that remains is this. Exactly which values
of the test statistic should we associate with the null hypothesis, and exactly which values go with
the alternative hypothesis? In my ESP study, for example, I've observed a value of X = 62. What

decision should | make? Should | choose to believe the null hypothesis or the alternative hypothesis?
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1.5.1 Critical regions and critical values

To answer this question we need to introduce the concept of a critical region for the test statistic
X. The critical region of the test corresponds to those values of X that would lead us to reject null
hypothesis (which is why the critical region is also sometimes called the rejection region). How do

we find this critical region? Well, let's consider what we know:

= X should be very big or very small in order to reject the null hypothesis.
= If the null hypothesis is true, the sampling distribution of X is Binomial(0.5, N).
» If o = .05, the critical region must cover 5% of this sampling distribution.

It's important to make sure you understand this last point. The critical region corresponds to those
values of X for which we would reject the null hypothesis, and the sampling distribution in question
describes the probability that we would obtain a particular value of X if the null hypothesis were
actually true. Now, let's suppose that we chose a critical region that covers 20% of the sampling
distribution, and suppose that the null hypothesis is actually true. What would be the probability of
incorrectly rejecting the null? The answer is of course 20%. And, therefore, we would have built a
test that had an a level of 0.2. If we want a = .05, the critical region is only allowed to cover 5%

of the sampling distribution of our test statistic.

As it turns out those three things uniquely solve the problem. Our critical region consists of the
most extreme values, known as the tails of the distribution. This is illustrated in Figure ?7. If we
want a = .05 then our critical regions correspond to X < 40 and X > 60.*® That is, if the number
of people saying “true” is between 41 and 59, then we should retain the null hypothesis. If the
number is between 0 to 40, or between 60 to 100, then we should reject the null hypothesis. The
numbers 40 and 60 are often referred to as the critical values since they define the edges of the

critical region.

*6Strictly speaking, the test | just constructed has a = .057, which is a bit too generous. However, if I'd chosen
39 and 61 to be the boundaries for the critical region then the critical region only covers 3.5% of the distribution. |
figured that it makes more sense to use 40 and 60 as my critical values, and be willing to tolerate a 5.7% type | error
rate, since that's as close as | can get to a value of a = .05.
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Critical Regions for a Two-Sided Test

lower critical region upper critical region
(2.5% of the distribution) (2.5% of the distribution)
<« e
.................................. -|I|I|| ||I|I|-..................................
[ I I I I I
0 20 40 60 80 100

Number of Correct Responses (X)

Figurel.2 The critical region associated with the hypothesis test for the ESP study, for a
hypothesis test with a significance level of a = .05. The plot shows the sampling distribution
of X under the null hypothesis (i.e., same as Figure ??). The grey bars correspond to those
values of X for which we would retain the null hypothesis. The blue (darker shaded) bars
show the critical region, those values of X for which we would reject the null. Because the
alternative hypothesis is two sided (i.e., allows both 6§ < .5 and 6 > .5), the critical region
covers both tails of the distribution. To ensure an o level of .05, we need to ensure that each

of the two regions encompasses 2.5% of the sampling distribution.

At this point, our hypothesis test is essentially complete:

1. (1) we choose an « level (e.g., a = .05;
2. (2) come up with some test statistic (e.g., X) that does a good job (in some meaningful

sense) of comparing Hp to Hy;
3. (3) figure out the sampling distribution of the test statistic on the assumption that the null

hypothesis is true (in this case, binomial); and then
4. (4) calculate the critical region that produces an appropriate « level (0-40 and 60-100).

All that we have to do now is calculate the value of the test statistic for the real data (e.g., X = 62)
and then compare it to the critical values to make our decision. Since 62 is greater than the critical

value of 60 we would reject the null hypothesis. Or, to phrase it slightly differently, we say that the
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test has produced a statistically significant result.

1.5.2 A note on statistical “significance”

Like other occult techniques of divination, the statistical method has a private jargon
deliberately contrived to obscure its methods from non-practitioners.
— Attributed to G. O. Ashley*’

A very brief digression is in order at this point, regarding the word “significant”. The concept of
statistical significance is actually a very simple one, but has a very unfortunate name. If the data
allow us to reject the null hypothesis, we say that “the result is statistically significant”, which is
often shortened to “the result is significant”. This terminology is rather old and dates back to a time
when “significant” just meant something like “indicated”, rather than its modern meaning which
is much closer to “important”. As a result, a lot of modern readers get very confused when they
start learning statistics because they think that a “significant result” must be an important one. It
doesn’t mean that at all. All that “statistically significant” means is that the data allowed us to
reject a null hypothesis. Whether or not the result is actually important in the real world is a very

different question, and depends on all sorts of other things.

1.5.3 The difference between one sided and two sided tests

There's one more thing | want to point out about the hypothesis test that I've just constructed. If
we take a moment to think about the statistical hypotheses I've been using,

Ho: 6=.5

Hi: 6#.5
we notice that the alternative hypothesis covers both the possibility that 8 < .5 and the possibility
that & > .5. This makes sense if | really think that ESP could produce either better-than-chance
performance or worse-than-chance performance (and there are some people who think that). In
statistical language this is an example of a two-sided test. It's called this because the alternative
hypothesis covers the area on both “sides” of the null hypothesis, and as a consequence the critical
region of the test covers both tails of the sampling distribution (2.5% on either side if @ = .05), as

illustrated earlier in Figure ?7.

*"The internet seems fairly convinced that Ashley said this, though | can’t for the life of me find anyone willing to
give a source for the claim.

- 13 -



Critical Region for a One-Sided Test

critical region
(5% of the distribution)

b———>

0 20 40 60 80 100

Number of Correct Responses (X)

Figurel.3 The critical region for a one sided test. In this case, the alternative hypothesis is
that 8 > .5 so we would only reject the null hypothesis for large values of X. As a consequence,
the critical region only covers the upper tail of the sampling distribution, specifically the upper
5% of the distribution. Contrast this to the two-sided version in Figure ?7.

However, that's not the only possibility. | might only be willing to believe in ESP if it produces bet-
ter than chance performance. If so, then my alternative hypothesis would only covers the possibility

that 6 > .5, and as a consequence the null hypothesis now becomes 6 < .5

Ho: 6<.5
Hli 8>.5

When this happens, we have what's called a one-sided test and the critical region only covers one

tail of the sampling distribution. This is illustrated in Figure ?7.

1.6

The p value of a test

In one sense, our hypothesis test is complete. We've constructed a test statistic, figured out its
sampling distribution if the null hypothesis is true, and then constructed the critical region for the
test. Nevertheless, I've actually omitted the most important number of all, the p value. It is to
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this topic that we now turn. There are two somewhat different ways of interpreting a p value, one
proposed by Sir Ronald Fisher and the other by Jerzy Neyman. Both versions are legitimate, though
they reflect very different ways of thinking about hypothesis tests. Most introductory textbooks tend
to give Fisher's version only, but | think that's a bit of a shame. To my mind, Neyman's version is
cleaner and actually better reflects the logic of the null hypothesis test. You might disagree though,

so I've included both. I'll start with Neyman's version.

1.6.1 A softer view of decision making

One problem with the hypothesis testing procedure that I've described is that it makes no dis-
tinction at all between a result that is “barely significant” and those that are “highly significant”.
For instance, in my ESP study the data | obtained only just fell inside the critical region, so | did
get a significant effect but it was a pretty near thing. In contrast, suppose that I'd run a study
in which X = 97 out of my N = 100 participants got the answer right. This would obviously be
significant too but my a much larger margin, such that there’s really no ambiguity about this at all.
The procedure that | have already described makes no distinction between the two. If | adopt the
standard convention of allowing @ = .05 as my acceptable Type | error rate, then both of these are

significant results.

This is where the p value comes in handy. To understand how it works, let's suppose that we ran
lots of hypothesis tests on the same data set, but with a different value of o in each case. When

we do that for my original ESP data what we'd get is something like this

Value of a | 0.05 0.04 003 002 001
Reject the null?‘ Yes Yes Yes No No

When we test the ESP data (X = 62 successes out of N = 100 observations), using o levels of .03
and above, we'd always find ourselves rejecting the null hypothesis. For o levels of .02 and below
we always end up retaining the null hypothesis. Therefore, somewhere between .02 and .03 there
must be a smallest value of a that would allow us to reject the null hypothesis for this data. This

is the p value. As it turns out the ESP data has p = .021. In short,

p is defined to be the smallest Type | error rate (a) that you have to be willing to

tolerate if you want to reject the null hypothesis.

If it turns out that p describes an error rate that you find intolerable, then you must retain the null.

If you're comfortable with an error rate equal to p, then it's okay to reject the null hypothesis in
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favour of your preferred alternative.

In effect, p is a summary of all the possible hypothesis tests that you could have run, taken across
all possible o values. And as a consequence it has the effect of “softening” our decision process.
For those tests in which p < o you would have rejected the null hypothesis, whereas for those tests
in which p > o you would have retained the null. In my ESP study | obtained X = 62 and as a
consequence |'ve ended up with p = .021. So the error rate | have to tolerate is 2.1%. In contrast,
suppose my experiment had yielded X = 97. What happens to my p value now? This time it's
shrunk to p = 1.36 x 1072°, which is a tiny, tiny*® Type | error rate. For this second case | would
be able to reject the null hypothesis with a lot more confidence, because | only have to be “willing”

to tolerate a type | error rate of about 1 in 10 trillion trillion in order to justify my decision to reject.

1.6.2 The probability of extreme data

The second definition of the p-value comes from Sir Ronald Fisher, and it's actually this one that
you tend to see in most introductory statistics textbooks. Notice how, when | constructed the critical
region, it corresponded to the tails (i.e., extreme values) of the sampling distribution? That's not
a coincidence, almost all “good” tests have this characteristic (good in the sense of minimising our
type Il error rate, 3). The reason for that is that a good critical region almost always corresponds
to those values of the test statistic that are least likely to be observed if the null hypothesis is true.
If this rule is true, then we can define the p-value as the probability that we would have observed a
test statistic that is at least as extreme as the one we actually did get. In other words, if the data are

extremely implausible according to the null hypothesis, then the null hypothesis is probably wrong.

1.6.3 A common mistake

Okay, so you can see that there are two rather different but legitimate ways to interpret the
p value, one based on Neyman's approach to hypothesis testing and the other based on Fisher’s.
Unfortunately, there is a third explanation that people sometimes give, especially when they're first
learning statistics, and it is absolutely and completely wrong. This mistaken approach is to refer to
the p value as “the probability that the null hypothesis is true”. It's an intuitively appealing way to
think, but it's wrong in two key respects. First, null hypothesis testing is a frequentist tool and the
frequentist approach to probability does not allow you to assign probabilities to the null hypothesis.
According to this view of probability, the null hypothesis is either true or it is not, it cannot have a

“5% chance” of being true. Second, even within the Bayesian approach, which does let you assign

*8That's p = .000000000000000000000000136 for folks that don't like scientific notation!

- 16 -



probabilities to hypotheses, the p value would not correspond to the probability that the null is true.
This interpretation is entirely inconsistent with the mathematics of how the p value is calculated.
Put bluntly, despite the intuitive appeal of thinking this way, there is no justification for interpreting

a p value this way. Never do it.

1.7

Reporting the results of a hypothesis test

When writing up the results of a hypothesis test there's usually several pieces of information that
you need to report, but it varies a fair bit from test to test. Throughout the rest of the book I'll
spend a little time talking about how to report the results of different tests (see Section ?? for
a particularly detailed example), so that you can get a feel for how it's usually done. However,
regardless of what test you're doing, the one thing that you always have to do is say something

about the p value and whether or not the outcome was significant.

The fact that you have to do this is unsurprising, it's the whole point of doing the test. What
might be surprising is the fact that there is some contention over exactly how you're supposed to
do it. Leaving aside those people who completely disagree with the entire framework underpinning
null hypothesis testing, there's a certain amount of tension that exists regarding whether or not to
report the exact p value that you obtained, or if you should state only that p < a for a significance

level that you chose in advance (e.g., p < .05).

1.7.1 The issue

To see why this is an issue, the key thing to recognise is that p values are terribly convenient. In
practice, the fact that we can compute a p value means that we don’t actually have to specify any o
level at all in order to run the test. Instead, what you can do is calculate your p value and interpret
it directly. If you get p = .062, then it means that you'd have to be willing to tolerate a Type | error
rate of 6.2% to justify rejecting the null. If you personally find 6.2% intolerable then you retain the
null. Therefore, the argument goes, why don’t we just report the actual p value and let the reader
make up their own minds about what an acceptable Type | error rate is? This approach has the big
advantage of “softening” the decision making process. In fact, if you accept the Neyman definition
of the p value, that's the whole point of the p value. We no longer have a fixed significance level
of o = .05 as a bright line separating “accept” from “reject” decisions, and this removes the rather

pathological problem of being forced to treat p = .051 in a fundamentally different way to p = .049.
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This flexibility is both the advantage and the disadvantage to the p value. The reason why a lot
of people don't like the idea of reporting an exact p value is that it gives the researcher a bit too
much freedom. In particular, it lets you change your mind about what error tolerance you're willing
to put up with after you look at the data. For instance, consider my ESP experiment. Suppose |
ran my test and ended up with a p value of .09. Should | accept or reject? Now, to be honest, |
haven't yet bothered to think about what level of Type | error I'm “really” willing to accept. | don't
have an opinion on that topic. But | do have an opinion about whether or not ESP exists, and |
definitely have an opinion about whether my research should be published in a reputable scientific
journal. And amazingly, now that I've looked at the data I'm starting to think that a 9% error rate
isn't so bad, especially when compared to how annoying it would be to have to admit to the world
that my experiment has failed. So, to avoid looking like | just made it up after the fact, | now say
that my a is .1, with the argument that a 10% type | error rate isn't too bad and at that level my

test is significant! | win.

In other words, the worry here is that | might have the best of intentions, and be the most honest
of people, but the temptation to just “shade” things a little bit here and there is really, really strong.
As anyone who has ever run an experiment can attest, it's a long and difficult process and you often
get very attached to your hypotheses. It's hard to let go and admit the experiment didn't find what
you wanted it to find. And that's the danger here. If we use the “raw” p-value, people will start
interpreting the data in terms of what they want to believe, not what the data are actually saying
and, if we allow that, why are we even bothering to do science at all? Why not let everyone believe
whatever they like about anything, regardless of what the facts are? Okay, that's a bit extreme, but
that's where the worry comes from. According to this view, you really must specify your o value
in advance and then only report whether the test was significant or not. It's the only way to keep

ourselves honest.

1.7.2 Two proposed solutions

In practice, it's pretty rare for a researcher to specify a single a level ahead of time. Instead,
the convention is that scientists rely on three standard significance levels: .05, .01 and .001. When
reporting your results, you indicate which (if any) of these significance levels allow you to reject the
null hypothesis. This is summarised in Table ??. This allows us to soften the decision rule a little
bit, since p < .01 implies that the data meet a stronger evidential standard than p < .05 would.
Nevertheless, since these levels are fixed in advance by convention, it does prevent people choosing

their o level after looking at the data.

Nevertheless, quite a lot of people still prefer to report exact p values. To many people, the
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Tablel.1 A commonly adopted convention for reporting p values: in many places it is con-
ventional to report one of four different things (e.g., p < .05) as shown below. I've included
the “significance stars” notation (i.e., a * indicates p < .05) because you sometimes see this
notation produced by statistical software. It's also worth noting that some people will write
n.s. (not significant) rather than p > .05.

Usual notation | Signif. stars | English translation The null is...
p > .05 The test wasn't significant Retained
p < .05 * The test was significant at o = .05 Rejected

but not at @ = .01 or @ = .001.

p < .01 *x The test was significant at o = .05 Rejected
and a = .01 but not at o = .001.

p < .001 ok The test was significant at all levels Rejected

advantage of allowing the reader to make up their own mind about how to interpret p = .06
outweighs any disadvantages. In practice, however, even among those researchers who prefer exact
p values it is quite common to just write p < .001 instead of reporting an exact value for small p.
This is in part because a lot of software doesn't actually print out the p value when it's that small
(e.g., SPSS just writes p = .000 whenever p < .001), and in part because a very small p value can
be kind of misleading. The human mind sees a number like .0000000001 and it's hard to suppress
the gut feeling that the evidence in favour of the alternative hypothesis is a near certainty. In practice
however, this is usually wrong. Life is a big, messy, complicated thing, and every statistical test ever
invented relies on simplifications, approximations and assumptions. As a consequence, it's probably
not reasonable to walk away from any statistical analysis with a feeling of confidence stronger than
p < .001 implies. In other words, p < .001 is really code for “as far as this test is concerned, the

evidence is overwhelming.”

In light of all this, you might be wondering exactly what you should do. There's a fair bit of
contradictory advice on the topic, with some people arguing that you should report the exact p
value, and other people arguing that you should use the tiered approach illustrated in Table ??. As
a result, the best advice | can give is to suggest that you look at papers/reports written in your field
and see what the convention seems to be. If there doesn't seem to be any consistent pattern, then

use whichever method you prefer.
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1.8

Running the hypothesis test in practice

At this point some of you might be wondering if this is a “real” hypothesis test, or just a toy
example that | made up. It's real. In the previous discussion | built the test from first principles,
thinking that it was the simplest possible problem that you might ever encounter in real life. However,
this test already exists. It's called the binomial test, and it's implemented by JASP as one of the
statistical analyses available when you hit the ‘Frequencies’ button. To test the null hypothesis that
the response probability is one-half p = .5,*9 and using data in which x = 62 of n = 100 people

made the correct response, available in the binomialtest.jasp data file, we get the results shown

-
™ L2 BT 27 ST ‘
Descriptives T-Tests ANOVA Regression  Frequencies Factor ‘
T T |
¥ Binomial Test (] ) Results |
Variables . . ‘
o Binomial Test

% Outcome |
Binomial Test ‘
95% Cl for Propartion |
Variable  Level Counts  Total Proportion  p  Lower  Upper |

Outcome 0 38 100 0380 0021 0285 0483
1 62 100 0620 0021 0517 0715 1
Note. Proportions tested against value: 0.5. |
Test value: 0.5 |

» | Al Hypothesis Additional Statisics 4

= Test value Confidence interval

> Test value Interval 95 % i

< Test value Vovk-Sellke maximum p-ratio
Plots

Descriptive plots |

Figurel.4 Binomial test analysis and results in JASP

Right now, this output looks pretty unfamiliar to you, but you can see that it's telling you more
or less the right things. Specifically, the p-value of 0.02 is less than the usual choice of o« = .05, so
you can reject the null. We'll talk a lot more about how to read this sort of output as we go along,

and after a while you'll hopefully find it quite easy to read and understand.

**Note that the p here has nothing to do with a p value. The p argument in the JASP binomial test corresponds
to the probability of making a correct response, according to the null hypothesis. In other words, it's the 6 value.
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1.9

Effect size, sample size and power

In previous sections I've emphasised the fact that the major design principle behind statistical
hypothesis testing is that we try to control our Type | error rate. When we fix o = .05 we are
attempting to ensure that only 5% of true null hypotheses are incorrectly rejected. However, this
doesn’t mean that we don't care about Type Il errors. In fact, from the researcher’s perspective, the
error of failing to reject the null when it is actually false is an extremely annoying one. With that in
mind, a secondary goal of hypothesis testing is to try to minimise 3, the Type Il error rate, although
we don't usually talk in terms of minimising Type Il errors. Instead, we talk about maximising the

power of the test. Since power is defined as 1 — 3, this is the same thing.

1.9.1 The power function

Sampling Distribution for X if 6=.55

lower critical region upper critical region
(2.5% of the distribution) (2.5% of the distribution)
< b
........................................ (] “||II|I------------------------------
[ I I I I ]
0 20 40 60 80 100

Number of Correct Responses (X)

Figurel.5 Sampling distribution under the alternative hypothesis for a population parameter
value of 8 = 0.55. A reasonable proportion of the distribution lies in the rejection region.

Let's take a moment to think about what a Type Il error actually is. A Type Il error occurs when
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the alternative hypothesis is true, but we are nevertheless unable to reject the null hypothesis. Ideally,
we'd be able to calculate a single number 3 that tells us the Type Il error rate, in the same way that
we can set a = .05 for the Type | error rate. Unfortunately, this is a lot trickier to do. To see this,
notice that in my ESP study the alternative hypothesis actually corresponds to lots of possible values
of 8. In fact, the alternative hypothesis corresponds to every value of 8 except 0.5. Let's suppose
that the true probability of someone choosing the correct response is 55% (i.e., 8 = .55). If so, then
the true sampling distribution for X is not the same one that the null hypothesis predicts, as the
most likely value for X is now 55 out of 100. Not only that, the whole sampling distribution has
now shifted, as shown in Figure ??. The critical regions, of course, do not change. By definition the
critical regions are based on what the null hypothesis predicts. What we're seeing in this figure is the
fact that when the null hypothesis is wrong, a much larger proportion of the sampling distribution
distribution falls in the critical region. And of course that's what should happen. The probability of
rejecting the null hypothesis is larger when the null hypothesis is actually false! However 6 = .55
is not the only possibility consistent with the alternative hypothesis. Let's instead suppose that
the true value of 9 is actually 0.7. What happens to the sampling distribution when this occurs?
The answer, shown in Figure ??, is that almost the entirety of the sampling distribution has now
moved into the critical region. Therefore, if 8 = 0.7, the probability of us correctly rejecting the null
hypothesis (i.e., the power of the test) is much larger than if 8 = 0.55. In short, while 6 = .55 and
0 = .70 are both part of the alternative hypothesis, the Type Il error rate is different.

What all this means is that the power of a test (i.e., 1 — 3) depends on the true value of 6. To
illustrate this, I've calculated the expected probability of rejecting the null hypothesis for all values
of 8, and plotted it in Figure ??. This plot describes what is usually called the power function of
the test. It's a nice summary of how good the test is, because it actually tells you the power (1 — ()
for all possible values of 6. As you can see, when the true value of 8 is very close to 0.5, the power

of the test drops very sharply, but when it is further away, the power is large.

1.9.2 Effect size

Since all models are wrong the scientist must be alert to what is importantly wrong.
It is inappropriate to be concerned with mice when there are tigers abroad
— George Box (Box1976)

The plot shown in Figure ?? captures a fairly basic point about hypothesis testing. If the true
state of the world is very different from what the null hypothesis predicts then your power will be

very high, but if the true state of the world is similar to the null (but not identical) then the power
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Sampling Distribution for X if 6=.70
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Figurel.6 Sampling distribution under the alternative hypothesis for a population parameter
value of 8 = 0.70. Almost all of the distribution lies in the rejection region.

of the test is going to be very low. Therefore, it's useful to be able to have some way of quantifying
how “similar” the true state of the world is to the null hypothesis. A statistic that does this is
called a measure of effect size (Cohen1988; Ellis2010). Effect size is defined slightly differently in
different contexts (and so this section just talks in general terms) but the qualitative idea that it tries
to capture is always the same. How big is the difference between the true population parameters
and the parameter values that are assumed by the null hypothesis? In our ESP example, if we let
8o = 0.5 denote the value assumed by the null hypothesis and let 8 denote the true value, then a
simple measure of effect size could be something like the difference between the true value and null

(i.e., @ — 0p), or possibly just the magnitude of this difference, abs(6 — 6p).

Why calculate effect size? Let's assume that you've run your experiment, collected the data, and
gotten a significant effect when you ran your hypothesis test. Isn't it enough just to say that you've
gotten a significant effect? Surely that's the point of hypothesis testing? Well, sort of. Yes, the
point of doing a hypothesis test is to try to demonstrate that the null hypothesis is wrong, but
that's hardly the only thing we're interested in. If the null hypothesis claimed that 8 = .5 and we
show that it's wrong, we've only really told half of the story. Rejecting the null hypothesis implies

that we believe that 8 # .5, but there's a big difference between 8 = .51 and 6 = .8. If we find
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Power Function for the Test (N=100)

1.0

0.6
I

0.4

Probability of Rejecting the Null
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0.0 0.2 0.4 0.6 0.8 1.0

True Value of 6

Figurel.7 The probability that we will reject the null hypothesis, plotted as a function of the
true value of 6. Obviously, the test is more powerful (greater chance of correct rejection) if the
true value of 0 is very different from the value that the null hypothesis specifies (i.e., 8 = .5).
Notice that when 6 actually is equal to .5 (plotted as a black dot), the null hypothesis is in
fact true and rejecting the null hypothesis in this instance would be a Type | error.

that 8 = .8, then not only have we found that the null hypothesis is wrong, it appears to be very
wrong. On the other hand, suppose we've successfully rejected the null hypothesis, but it looks like
the true value of 6 is only .51 (this would only be possible with a very large study). Sure, the null
hypothesis is wrong but it’s not at all clear that we actually care because the effect size is so small.
In the context of my ESP study we might still care since any demonstration of real psychic powers
would actually be pretty cool*!?, but in other contexts a 1% difference usually isn’t very interesting,
even if it is a real difference. For instance, suppose we're looking at differences in high school exam
scores between males and females and it turns out that the female scores are 1% higher on average
than the males. If I've got data from thousands of students then this difference will almost certainly
be statistically significant, but regardless of how small the p value is it's just not very interesting.

You'd hardly want to go around proclaiming a crisis in boys education on the basis of such a tiny

*10Although in practice a very small effect size is worrying because even very minor methodological flaws might be
responsible for the effect, and in practice no experiment is perfect so there are always methodological issues to worry
about.
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Tablel.2 A crude guide to understanding the relationship between statistical significance and
effect sizes. Basically, if you don’t have a significant result then the effect size is pretty
meaningless because you don't have any evidence that it's even real. On the other hand, if
you do have a significant effect but your effect size is small then there's a pretty good chance
that your result (although real) isn’t all that interesting. However, this guide is very crude.
It depends a lot on what exactly you're studying. Small effects can be of massive practical
importance in some situations. So don't take this table too seriously. It's a rough guide at
best.

big effect size small effect size

significant result difference is real, and difference is real, but

of practical importance might not be interesting

non-significant result | no effect observed no effect observed

difference would you? It's for this reason that it is becoming more standard (slowly, but surely) to
report some kind of standard measure of effect size along with the the results of the hypothesis test.
The hypothesis test itself tells you whether you should believe that the effect you have observed is

real (i.e., not just due to chance), whereas the effect size tells you whether or not you should care.

1.9.3 Increasing the power of your study

Not surprisingly, scientists are fairly obsessed with maximising the power of their experiments.
We want our experiments to work and so we want to maximise the chance of rejecting the null
hypothesis if it is false (and of course we usually want to believe that it is false!). As we've seen, one
factor that influences power is the effect size. So the first thing you can do to increase your power
is to increase the effect size. In practice, what this means is that you want to design your study
in such a way that the effect size gets magnified. For instance, in my ESP study | might believe
that psychic powers work best in a quiet, darkened room with fewer distractions to cloud the mind.
Therefore | would try to conduct my experiments in just such an environment. If | can strengthen
people’'s ESP abilities somehow then the true value of 8 will go up*!! and therefore my effect size

will be larger. In short, clever experimental design is one way to boost power, because it can alter

*1INotice that the true population parameter 8 doesn’t necessarily correspond to an immutable fact of nature. In
this context 0 is just the true probability that people would correctly guess the colour of the card in the other room.
As such the population parameter can be influenced by all sorts of things. Of course, this is all on the assumption
that ESP actually exists!
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Figurel.8 The power of our test plotted as a function of the sample size N. In this case, the
true value of 6 is 0.7 but the null hypothesis is that 6 = 0.5. Overall, larger N means greater
power. (The small zig-zags in this function occur because of some odd interactions between
0, a and the fact that the binomial distribution is discrete, it doesn't matter for any serious
purpose).

the effect size.

Unfortunately, it's often the case that even with the best of experimental designs you may have
only a small effect. Perhaps, for example, ESP really does exist but even under the best of conditions
it's very very weak. Under those circumstances your best bet for increasing power is to increase the
sample size. In general, the more observations that you have available, the more likely it is that you
can discriminate between two hypotheses. If | ran my ESP experiment with 10 participants and 7 of
them correctly guessed the colour of the hidden card you wouldn't be terribly impressed. But if | ran
it with 10,000 participants, and 7,000 of them got the answer right, you would be much more likely
to think | had discovered something. In other words, power increases with the sample size. This is
illustrated in Figure ??, which shows the power of the test for a true parameter of 8 = 0.7 for all

sample sizes N from 1 to 100, where I'm assuming that the null hypothesis predicts that 8y = 0.5.

Because power is important, whenever you're contemplating running an experiment it would be
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pretty useful to know how much power you're likely to have. It's never possible to know for sure since
you can't possibly know what your real effect size is. However, it's often (well, sometimes) possible to
guess how big it should be. If so, you can guess what sample size you need! This idea is called power
analysis, and if it's feasible to do it then it's very helpful. It can tell you something about whether
you have enough time or money to be able to run the experiment successfully. It's increasingly
common to see people arguing that power analysis should be a required part of experimental design,
so it's worth knowing about. | don't discuss power analysis in this book, however. This is partly for a
boring reason and partly for a substantive one. The boring reason is that | haven't had time to write
about power analysis yet. The substantive one is that I'm still a little suspicious of power analysis.
Speaking as a researcher, | have very rarely found myself in a position to be able to do one. It's
either the case that (a) my experiment is a bit non-standard and | don't know how to define effect
size properly, or (b) | literally have so little idea about what the effect size will be that | wouldn't
know how to interpret the answers. Not only that, after extensive conversations with someone who
does stats consulting for a living (my wife, as it happens), | can't help but notice that in practice
the only time anyone ever asks her for a power analysis is when she's helping someone write a grant
application. In other words, the only time any scientist ever seems to want a power analysis in real
life is when they're being forced to do it by bureaucratic process. It's not part of anyone's day to
day work. In short, I've always been of the view that whilst power is an important concept, power
analysis is not as useful as people make it sound, except in the rare cases where (a) someone has
figured out how to calculate power for your actual experimental design and (b) you have a pretty
good idea what the effect size is likely to be.*2 Maybe other people have had better experiences
than me, but I've personally never been in a situation where both (a) and (b) were true. Maybe
I'll be convinced otherwise in the future, and probably a future version of this book would include
a more detailed discussion of power analysis, but for now this is about as much as I'm comfortable

saying about the topic.

1.10

Some issues to consider

What I've described to you in this chapter is the orthodox framework for null hypothesis significance
testing (NHST). Understanding how NHST works is an absolute necessity because it has been the

dominant approach to inferential statistics ever since it came to prominence in the early 20th century.

*120ne possible exception to this is when researchers study the effectiveness of a new medical treatment and they
specify in advance what an important effect size would be to detect, for example over and above any existing treatment.
In this way some information about the potential value of a new treatment can be obtained.
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It's what the vast majority of working scientists rely on for their data analysis, so even if you hate it
you need to know it. However, the approach is not without problems. There are a number of quirks
in the framework, historical oddities in how it came to be, theoretical disputes over whether or not
the framework is right, and a lot of practical traps for the unwary. I'm not going to go into a lot of

detail on this topic, but | think it's worth briefly discussing a few of these issues.

1.10.1 Neyman versus Fisher

The first thing you should be aware of is that orthodox NHST is actually a mash-up of two
rather different approaches to hypothesis testing, one proposed by Sir Ronald Fisher and the other
proposed by Jerzy Neyman (Lehmann2011). The history is messy because Fisher and Neyman
were real people whose opinions changed over time, and at no point did either of them offer “the
definitive statement” of how we should interpret their work many decades later. That said, here's a

quick summary of what | take these two approaches to be.

First, let's talk about Fisher's approach. As far as | can tell, Fisher assumed that you only had
the one hypothesis (the null) and that what you want to do is find out if the null hypothesis is
inconsistent with the data. From his perspective, what you should do is check to see if the data are
“sufficiently unlikely” according to the null. In fact, if you remember back to our earlier discussion,
that's how Fisher defines the p-value. According to Fisher, if the null hypothesis provided a very poor
account of the data then you could safely reject it. But, since you don’t have any other hypotheses
to compare it to, there's no way of “accepting the alternative” because you don't necessarily have

an explicitly stated alternative. That's more or less all there is to it.

In contrast, Neyman thought that the point of hypothesis testing was as a guide to action and his
approach was somewhat more formal than Fisher's. His view was that there are multiple things that
you could do (accept the null or accept the alternative) and the point of the test was to tell you
which one the data support. From this perspective, it is critical to specify your alternative hypothesis
properly. If you don’t know what the alternative hypothesis is, then you don't know how powerful the
test is, or even which action makes sense. His framework genuinely requires a competition between
different hypotheses. For Neyman, the p value didn't directly measure the probability of the data
(or data more extreme) under the null, it was more of an abstract description about which “possible
tests” were telling you to accept the null, and which “possible tests” were telling you to accept the

alternative.

As you can see, what we have today is an odd mishmash of the two. We talk about having both
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a null hypothesis and an alternative (Neyman), but usually*!® define the p value in terms of exreme
data (Fisher), but we still have o values (Neyman). Some of the statistical tests have explicitly
specified alternatives (Neyman) but others are quite vague about it (Fisher). And, according to
some people at least, we're not allowed to talk about accepting the alternative (Fisher). It's a mess,

but | hope this at least explains why it's a mess.

1.10.2 Bayesians versus frequentists

Earlier on in this chapter | was quite emphatic about the fact that you cannot interpret the p
value as the probability that the null hypothesis is true. NHST is fundamentally a frequentist tool
(see Chapter ??) and as such it does not allow you to assign probabilities to hypotheses. The null
hypothesis is either true or it is not. The Bayesian approach to statistics interprets probability as
a degree of belief, so it's totally okay to say that there is a 10% chance that the null hypothesis is
true. That's just a reflection of the degree of confidence that you have in this hypothesis. You aren't
allowed to do this within the frequentist approach. Remember, if you're a frequentist, a probability
can only be defined in terms of what happens after a large number of independent replications (i.e.,
a long run frequency). If this is your interpretation of probability, talking about the “probability”
that the null hypothesis is true is complete gibberish: a null hypothesis is either true or it is false.
There's no way you can talk about a long run frequency for this statement. To talk about “the

probability of the null hypothesis” is as meaningless as “the colour of freedom”. It doesn't have one!

Most importantly, this isn’t a purely ideological matter. If you decide that you are a Bayesian
and that you're okay with making probability statements about hypotheses, you have to follow the
Bayesian rules for calculating those probabilities. I'll talk more about this in Chapter 7?7, but for now
what | want to point out to you is the p value is a terrible approximation to the probability that Hg
is true. If what you want to know is the probability of the null, then the p value is not what you're

looking for!

1.10.3 Traps

As you can see, the theory behind hypothesis testing is a mess, and even now there are arguments
in statistics about how it “should” work. However, disagreements among statisticians are not our
real concern here. Our real concern is practical data analysis. And while the “orthodox” approach to

null hypothesis significance testing has many drawbacks, even an unrepentant Bayesian like myself

*13 Although this book describes both Neyman's and Fisher's definition of the p value, most don’t. Most introductory
textbooks will only give you the Fisher version.
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would agree that they can be useful if used responsibly. Most of the time they give sensible answers
and you can use them to learn interesting things. Setting aside the various ideologies and historical
confusions that we've discussed, the fact remains that the biggest danger in all of statistics is
thoughtlessness. | don't mean stupidity, | literally mean thoughtlessness. The rush to interpret a
result without spending time thinking through what each test actually says about the data, and
checking whether that's consistent with how you've interpreted it. That's where the biggest trap

lies.

To give an example of this, consider the following example (Gelman2006). Suppose I'm running
my ESP study and I've decided to analyse the data separately for the male participants and the
female participants. Of the male participants, 33 out of 50 guessed the colour of the card correctly.
This is a significant effect (p = .03). Of the female participants, 29 out of 50 guessed correctly. This
is not a significant effect (p = .32). Upon observing this, it is extremely tempting for people to start
wondering why there is a difference between males and females in terms of their psychic abilities.
However, this is wrong. If you think about it, we haven't actually run a test that explicitly compares
males to females. All we have done is compare males to chance (binomial test was significant) and
compared females to chance (binomial test was non significant). If we want to argue that there
is a real difference between the males and the females, we should probably run a test of the null
hypothesis that there is no difference! We can do that using a different hypothesis test,*'* but when
we do that it turns out that we have no evidence that males and females are significantly different
(p = .54). Now do you think that there's anything fundamentally different between the two groups?
Of course not. What's happened here is that the data from both groups (male and female) are
pretty borderline. By pure chance one of them happened to end up on the magic side of the p = .05
line, and the other one didn’t. That doesn’t actually imply that males and females are different.
This mistake is so common that you should always be wary of it. The difference between significant
and not-significant is not evidence of a real difference. If you want to say that there's a difference

between two groups, then you have to test for that difference!

The example above is just that, an example. I've singled it out because it's such a common one,
but the bigger picture is that data analysis can be tricky to get right. Think about what it is you
want to test, why you want to test it, and whether or not the answers that your test gives could

possibly make any sense in the real world.

*141n this case, the Pearson chi-square test of independence (Chapter ?7?)
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